COVID-19 Updates

Learn More

Breadcrumb

NSF grant on information theoretic analysis of machine learning in computer vision

ECE professors, Amit Roy-Chowdhury and Ertem Tuncel, have received a new $500K grant from NSF’s Communications and Information Foundations program on information theoretic analysis of machine learning algorithms in computer vision. The recent successes in image and video analysis have been largely in the domain of supervised learning. Supervised learning methods assume the availability of extensive amounts of manually annotated/labeled training data, which limits the applicability of existing methods to complex and unseen environments. This has motivated growing interest in developing semi-supervised, and even unsupervised, methods for image and video analysis, i.e., methods that have limited or even no manually annotated data. These methods focus on how to learn visual analysis models with limited labeled data; however, the problem of what to label is far less addressed. This project will focus on mathematically rigorous approaches on how to choose these samples to label. More information can be found at https://www.nsf.gov/awardsearch/showAward?AWD_ID=2008020&HistoricalAwards=false.