Instructor: Zak M. Kassas

Office: WCH 319
Phone: 951-827-5652
Email: zkassas@ece.ucr.edu

Course Webpage: Available through iLearn
Office Hours: T. 6:30 pm – 8:00 pm, and by appointment

Lectures: Tue. & Thu., 2:10 pm – 3:30 pm, SPR 2355

Suggested References:

Prerequisites: Consent of instructor

Course Objective: This course develops a comprehensive understanding of GNSS signal structure, GNSS communication channel, received power, RF front-end receiver design, sampling, correlation, acquisition techniques, tracking loop theory, noise and bandwidth concepts, generation of GNSS observables, and software-defined radio (SDR) implementation.

Exams: There will be one midterm exam and a final. Missed exams may not be made up (unless it is the result of an officially excused absence).

Project: There will be a final project to design and implement a GPS SDR via high-level programming tools (e.g., MATLAB and LabVIEW). The project will integrate many of the topics introduced in the course.

Attendance and Course Policy: Attendance is expected. You are responsible for material covered in class and in the reading assignments.

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>40%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
</tr>
</tbody>
</table>
Tentative Topical Coverage:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1 | **GNSS Fundamentals:**
Methods of radionavigation; GNSS system architecture; Doppler, pseudorange, and carrier phase measurement models |
| 2 | **Noise in Communication Systems:**
Received signal-to-noise levels, carrier-to-noise ratio, noise in cascaded systems |
| 3 | **Spread Spectrum Signaling:**
Power spectrum of binary data sequences, direct sequence spread spectrum, multiple access |
| 4 | **GPS Signal Structure:**
Model, linear feedback shift registers, Gold sequences |
| 5 | **GNSS Radiowave Propagation Effects:**
Ionospheric effects, code-carrier divergence, phase and group delay, calibration for ionospheric effects, scintillation effects, neutral atmospheric effects |
| 6 | **Signal Conditioning:**
RF front-ends, frequency conversion, analog-to-digital conversion, bandpass sampling, practical sampling, uniform sampling and down-conversion, quantization |
| 7 | **Signal Acquisition:**
Statistics of signal acquisition, hypothesis testing, Neyman-Pearson Lemma, FFT-based acquisition |
| 8 | **Coherent and Non-Coherent Integration:**
Coherence time, signal models for long coherent integration, high-sensitivity receivers |
| 9 | **Tracking Loops:**
Steady-state tracking error and loop type, phase tracking loops, code tracking loops, loop filters, code generation |
| 10 | **Software-Defined GNSS Receiver Design:**
Combined code and carrier tracking, GNSS receiver block diagram, GNSS observables and navigation solutions |