Minimizing Electricity Cost for Geo-Distributed Interactive Services with Tail Latency Constraint

Mohammad A. Islam, Anshul Gandhi, and Shaolei Ren

This work was supported in part by the U.S. National Science Foundation under grants CNS-1622832, CNS-1464151, CNS-1551661, CNS-1565474, and ECCS-1610471
Data centers

- Large IT companies have data centers all over the world
- Can exploit spatial diversity using Geographical Load Balancing (GLB)
Geographical load balancing (GLB)

Data Center 1

Data Center 2

Data Center 3

Load Balancing to reduce electricity cost, maximize renewable utilization, reducing carbon footprint, etc.

Avg. latency $t' = \text{mean}(t_1, t_2, t_3)$
Geographical load balancing (GLB)

Assuming data required is **centrally** managed, and replicated over all the sites.

Avg. latency $t' = \text{mean}(t_1, t_2, t_3)$
GLB is facing new challenges

- Tons of locally generated data
- Smart home, IoT, edge computing
GLB is facing new challenges

- Tons of locally generated data
 - Smart home, IoT, edge computing
- Limited BW for large data transfer
GLB is facing new challenges

- Tons of locally generated data
 - Smart home, IoT, edge computing
- Limited BW for large data transfer
- Government restriction due to data sovereignty and privacy concerns

Centralized processing is not practical
Geo-distributed processing is emerging
Geo-distributed processing

Region 1

Region 2

Region 3

User

request (r)

request (r)

request (r)

request (r)
Geo-distributed processing

Region 1
Regional Data Center
Processing Request

Region 2

Region 3

User

Request (r)
Response (t_1)
Request (r)
Response (t_2)
Request (r)
Response (t_3)

(t_2) response to request (r)
Geo-distributed processing

Response time depends on multiple data centers
Tail latency based SLO

- Service providers prefer tail latency (i.e., response time) based SLO
- Two parameters
 - Percentile value (e.g., 95% or p95)
 - Latency threshold
- Example
 - SLO of \textit{p95 and 100ms}, means \textit{95% of the response times should be less than 100ms}
- Existing research on GLB mostly focuses on average latency
 - Zhenhua Liu [Sigmetrics’11], Darshan S. Palasamudram [SoCC’12], Kien Li [IGCC’10, SC’11], Yanwei Zhang [Middleware’11]...
Challenges of geo-distributed processing

• How to characterize the tail latency?
 • Response time depends on multiple paths for each request
 • Includes large network latency
 • Simple queueing models like M/M/1 for average latency cannot be used

• How to optimize load distribution among data centers?

McTail: a novel GLB algorithm with data driven profiling of tail latency
Problem formulation

• General formulation with N data centers and S traffic sources

$$\text{minimize } \sum_{j=1}^{N} q_j \cdot e_j(a_j)$$

subject to, $$p_i(\hat{a}, \hat{r}) \geq P_i^{SLO} \quad \forall i = 1,2,\ldots,S$$

• $\hat{a} = \{a_1, a_2, \ldots, a_N\}$ is workload (request processed) at different data centers
• \hat{r}_i is the network paths from source i to all the data centers
• p_i is $\Pr(d_i \leq D_i)$, where d_i is end-to-end response time at traffic source i, and D_i is delay target (e.g., 100ms) for tail latency
How to determine $p_i(\vec{a}, \vec{r}_i)$?
\(p_{i,j}^{\text{route}}(a_j, r_{i,j}) \) is the probability that response time of \(r_{i,j} \) is less than \(D_i \)
Same request is sent to all the data centers of a group

User

Source i

Route $r_{i,1}$

Data Center 1

Route $r_{i,2}$

Data Center 2

Route $r_{i,3}$

Data Center 3
Same request is sent to all the data centers of a group
Same request is sent to all the data centers of a group

Because of differences in data sets, random performance interference etc., response time over different routes can be considered un-correlated

$$p_{i,g}^{\text{group}}(\vec{a}, \vec{r}) = p_{i,1}^{\text{route}}(a_1, r_{i,1}) \times p_{i,2}^{\text{route}}(a_1, r_{i,2}) \times p_{i,1}^{\text{route}}(a_3, r_{i,3})$$
Example

For requests sent to this group of data centers, 94% of the response times are less than D_i.
Response time probability for a source

• $G = N_1 \times N_2 \times \cdots \times N_M$ possible destination groups
 • Where N_m is the number of data center in region m

• Response time probability at source i is

$$p_i(\lambda) = p_i(\tilde{a}, \tilde{r}) = \frac{1}{\Lambda_i} \sum_{g=1}^{G} \lambda_{i,g} \cdot p_{i,g}^{\text{group}}(\tilde{a}, \tilde{r})$$

• $\lambda_{i,g}$ is the workload sent to destination group g
• $\Lambda_i = \sum_{g=1}^{G} \lambda_{i,g}$ is the total workload from source i
Updated problem formulation

minimize \(\sum_{j=1}^{N} q_j \cdot e_j(a_j) \)

subject to:

\[
\frac{1}{\Lambda_i} \sum_{g=1}^{G} \lambda_{i,g} \cdot p_{i,g}^{\text{group}}(\tilde{a}, \tilde{r}) \geq P_i^{\text{SLA}},
\]

\[
\sum_{g=1}^{G} \lambda_{i,g} = \Lambda_i, \forall i = 1, 2, \ldots, S
\]

Objective same as before, minimizing electricity cost

Tail latency decomposed into route-wise latencies

Workload constraint

Need to determine \(p_{i,j}^{\text{route}}(a_j, r_{i,j}) \) for all routes
Profiling response time probability of a route

- We need tail latency
 - Hard to model for arbitrary workload distributions

- **Data driven approach** - profile the response time statistics (find the probability distribution) from observed data

- Example
 - Response profile for 100K request
Challenges of data driven approach

• Response time profile of a route depends on amount of data center workload
 • We set W discrete levels of workload for each data center

• $S \times N$ network paths between S sources and N data centers

• **Total $S \times W \times N$ number of profiles**

• Need to update if network latency distribution, data center configuration, or workload composition changes

Special note: Slow and repeated profiling
Profiling response statistics for one route

• $F_{i,j}^N$ is network latency distribution
• $F_j^D(x)$ is data center latency distribution with load x
• End-to-end latency distribution of route $r_{i,j}$ is

$$F_{i,j}^R = F_{i,j}^N * F_j^D(x)$$

• where " * “ is the convolution operator

Key idea: profile $F_{i,j}^N$ and $F_j^D(x)$ seperately
Example

Latency of data center j with load x

Network latency of route $r_{i,j}$

End-to-end response profile of a route, $F_{i,j}^R$
Profiling response time statistics in McTail

• $S \times N$ network routes profiles
• $N \times W$ data centers profiles
• Total $(S + W) \times N$ profiles versus $S \times W \times N$ profiles before
• Profiling overhead
 • Only data center profiles need updating when workload composition and/or data center configuration is changed
 • Infrequent event
 • Network latency distribution may change more frequently
 • Already monitored by service providers
• Data overhead comparable to existing GLB studies
McTail system diagram

Network Profiler, F^N

Traffic Gateway

Data Center Profiler, $F^D(x)$

Utilization

Network Latency Distribution

Service Time Distribution

Data Center Profiler, $F^D(x)$

Utilization
Evaluation
Evaluation setup

3 regions, 9 data centers

Based on Google and Facebook data center locations
Evaluation setup

Based on Google and Facebook data center locations

- Data Center
- Traffic Source

3 regions, 9 data centers

5 traffic sources
Evaluation setup

• Discrete event simulation using SimEvents from Mathworks
• Half-normal network latency distribution based on route length
• Real world traces from Google and Microsoft
• Location wise electricity prices
• SLO set to p95 response time of 1.5 seconds
• 24 hour simulation with load distribution updated every 15 minutes
• Homogenous data center setting to ease the simulation
Cost saving

7% Cost saving using McTail
Performance

Pr(response < 1.5s)

Oklahoma Belgium Sydney
Chile Singapore

Always ≥ 0.95
Impact of SLO change

Saving goes up as response time threshold is relaxed
Impact of SLO change

More saving when percentile requirement is less stringent
McTail

• A novel GLB algorithm for geo-distributed interactive services
 • Data-driven approach to characterize the tail latency
 • Negligible extra profiling overhead

Practical and efficient