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Abstract—We study the demand response (DR) of geo-
distributed data centers (DCs) using smart grid’s pricing signals
set by local electric utilities. The geo-distributed DCs are suitable
candidates for the DR programs due to their huge energy con-
sumption and flexibility to distribute their energy demand across
time and location, whereas the price signal is well-known for DR
programs to reduce the peak-to-average load ratio. There are
two dependencies that make the pricing design difficult: 1) depen-
dency among utilities; and 2) dependency between DCs and their
local utilities. Our proposed pricing scheme is constructed based
on a two-stage Stackelberg game in which each utility sets a
real-time price to maximize its own profit in Stage I and based
on these prices, the DCs’ service provider minimizes its cost via
workload shifting and dynamic server allocation in Stage II. For
the first dependency, we show that there exists a unique Nash
equilibrium. For the second dependency, we propose an iterative
and distributed algorithm that can converge to this equilibrium,
where the “right prices” are set for the “right demands.” We also
verify our proposal by trace-based simulations, and results show
that our pricing scheme significantly outperforms other baseline
schemes in terms of flattening the power demand over time and
space.

Index Terms—Data centers (DCs), demand response (DR),
Nash equilibrium, smart grids, Stackelberg games.

I. INTRODUCTION

ATA CENTERS (DCs) are well-known as large-scale
Dconsumers of electricity (e.g., DCs consumed 1.5% of
the worldwide electricity supply in 2011 and this fraction
is expected to grow to 8% by 2020 [1]). A recent study
shows that many DC operators paid more than $10M [2] on
their annual electricity bills, which continues to rise with
the flourishing of cloud-computing services. Therefore, it is
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necessary for DC operators to both cut costs and increase
performances. Recent works have shown that DC operators
can save more than 5%-45% [3] operation cost by leverag-
ing time and location diversities of electricity market prices to
optimize geo-distributed DCs. However, most of the existing
research is based on one important assumption: the electricity
price applying to DCs does not change with demand. This
assumption may not be true since an individual DC with
enormous energy consumption (e.g., Facebook’s DC in Crook
County, Oregon can contributed up to 50% of the total load
of its distribution grid [4]) will impact to the supply demand
balance of its local utility, which in turn can alter the util-
ity’s price as shown in recent studies [5]-[7]. Furthermore,
the power grid can be negatively affected due to this assump-
tion. For example, blackouts might happen due to overloads
in these areas where the DCs operator shifts all of its energy
demand to a local utility with a low price and a high enough
background load.

To make the power grid more reliable and robust, tremen-
dous research and industry efforts have focused on building
the next-generation power grids, known as smart grids. Due
to its efficiency and potential, many studies consider how DC
operators can run their geo-distributed DCs on smart grids that
support two-way information exchange between utilities and
customers [5], [8], [9]. An important feature of smart grids is
demand response (DR). DR programs seek to provide incen-
tives to induce dynamic demand management of customers’
electricity load in response to power supply conditions. For
example, just before the peak load hours, a utility can send
the warning signal to customers’ smart meters which will
automatically schedule their demands to reduce the power con-
sumption. Due to their huge and rapidly increasing energy
consumption, DCs should be significantly encouraged to par-
ticipate in the DR programs. Furthermore, with the recent trend
in dynamic server capacity provision and flexibility of work-
load shifting, geo-distributed DCs have a great potential to eas-
ily adapt the DR programs. One of the DR programs is using
real-time pricing schemes to reduce the peak-to-average (PAR)
load ratio by encouraging customers to shift their energy
demand away from peak hours. The challenge of an effec-
tive pricing scheme is how to charge the customers with a
right price not only at the right time and right place but also
on the right amount of customers’ demand. A real-time pric-
ing scheme is considered effective if it can mitigate the large
fluctuation of energy consumption between peak and off-peak
hours to increase power grid’s reliability and robustness.
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In this paper, we consider the problem of using real-
time pricing of utilities to enable the geo-distributed DCs’
participation into the DR program. In this program, while
geo-distributed DCs employ workload shifting and dynamic
server provisioning in response to the price signal, the role
of local utilities is how to set the real-time prices to flatten
the customers’ demand load. It can be observed that there
is an interaction between geo-distributed DCs and their local
utilities; and it is the first challenge of this DR problem that
we call vertical dependency. Specifically, when participating
in the DR program, a DCs’ operator will distribute its energy
demand geographically based on the electric prices adjusted
intelligently by the local utilities. However, the utilities set
their prices based on the total demand including the DCs’
demand, which is only known when the price is available. We
clearly see that this dependency makes it difficult for both
DCs and utilities to make their decisions. The second impor-
tant challenge, which is less obvious, is an interaction among
local utilities feeding power to the geo-distributed DCs; and
we call it horizontal dependency. Specifically, the DCs’ deci-
sions on workload shifting and server allocation depend on
the electric prices set by local utilities; therefore, if any sub-
set of the local utilities change their prices, it can lead to the
DCs’ decision changing. Since the utilities are noncooperative
(i.e., no information exchange) in practice, how to design a
pricing mechanism that can enable an equilibrium price setting
profile is the bottleneck of this DR program.

To tackle the above discussed challenges, our contributions
can be summarized as follows.

1) We transform the functional space of the geo-distributed
DCs’ DR program into a mathematical space of a for-
mulated two-stage Stackelberg game. In this game, each
utility will set a real-time price to maximize its own
profit in Stage I; and given these prices, the DCs’ oper-
ator will minimize its cost via workload shifting and
dynamic server allocation in Stage II. We also utilize
the backward induction method to find the Stackelberg
equilibria of this two-stage game.

2) Based on the Stackelberg equilibria, our proposed
scheme can deal with the inherent challenges of this
DR as follows: first, the horizontal dependency between
utilities are characterized as a strategic game in Stage I,
and we show that there exists a Nash equilibrium in this
game. Second, we propose an iterative and distributed
algorithm to achieve the Stackelberg equilibrium. In this
algorithm, the DCs and utilities exchange their informa-
tion (i.e., DCs’ demand and utilities’ prices) iteratively
until the algorithm converges. We also examine the algo-
rithm’s convergence where the “right prices” are set
for the “right demands” as a solution for the vertical
dependency issue.

3) Finally, we perform a real-world trace-based simulation
to solidify the analysis. The results show that our pro-
posed pricing scheme can flatten the workload not only
over time but also over space to improve the power grid’s
reliability and robustness.

The rest of this paper is organized as follows. Section II is
about related work. Section III presents the system model and

IEEE TRANSACTIONS ON SMART GRID

the two-stage Stackelberg game. We analyze this game and
propose a distributed algorithm in Section IV. Section V pro-
vides the trace-based simulation results. Finally, Section VI
concludes this paper.

II. RELATED WORK

DR is identified as one of high-prioritized areas for future
smart grids [10]-[12] with its potential to reduce up to 20%
of the total peak electricity demand of the U.S. [13]. Most
DR proposals, which try to incentivize customers to manage
their demand dynamically in response to the power supply
conditions, mostly targeted to residential customers [14]-[17].
On the other hand, most of the existing research on DCs,
which can be classified as medium or large industrial cus-
tomers, mainly focus on their cost minimization that takes the
electricity price for granted [3], [18], [19], which does not fol-
low any DR programs. However, due to the important role of
DCs in DR programs, DRs of DCs recently receive significant
attention [4], [7]-[9], [20]-[22].

For those work considering DR of geo-distributed DCs,
based on the interactions between DCs and utilities, we simply
divide them into two categories.

1) One-Way Interaction: One of the most popular DR pro-
grams of DCs is coincident peak pricing (CPP), which is
studied in [21]. CPP charges very high prices for power usage
during the coincident peak hour at which the most electric
demands is requested to the utility. By predicting the upcom-
ing potential peak hours, the utilities send a warning signal
(i.e., not a price) to help customers schedule their power con-
sumption. However, current DCs do not respond actively to the
warning signals due to the uncertainty of these warnings [21],
which motivates researchers to devise more effective DR
approaches. Wang et al. [7] used a “prediction-based” method
where the customers (DCs) respond to the prices which are
chosen based on a supply function. This supply function can
be modeled using some data fitting methods based on history.
Hence, in this paper only customers respond to a predicted
price while there is no action from the power suppliers to set
the prices corresponding to the demand.

2) Two-Way Interaction: — There are three recent
papers [5], [8], [9] in this category. The first two papers,
which are highly related to this paper, consider dynamic pric-
ing mechanisms with the coupling between utilities and DCs,
whereas the last one proposed that DCs can participate in
the spot market via a broker, which is a significant departure
from our model. Moreover, the system model of [9] assumes
that all utilities cooperate to solve a social optimization
problem, which is not relevant to current practice since there
is no information exchange between utilities in reality. On the
other hand, the pricing scheme of [8] is based on a heuristic
approach, which cannot maximize the utilities’ profit as well
as minimize their cost. This paper falls into this category of
two-way interaction, yet is different from others in terms of
its two-stage game-theoretic approach to tackle the vertical
and horizontal coupling issues, which are not addressed in
the literature, between geo-distributed DCs and local utilities.
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TABLE I
SUMMARY OF NOTATIONS

Notation Description
I Number of tenants
A Total workload at front-end server
i Workload at DC 4
d; Transmission delay from front-end server to DC ¢
¥ Weight of utility cost
ef Interactive-job energy
ei.’ Batch-job energy
e; Total energy of DC ¢
w Weight factor of migration cost
Di Price at DC ¢
i Service rate of DC 7
S; Number of active servers
B; Background energy demand of utility 4
o, Bi Parameters of background demand B; model
D; Maximum average delay of DC ¢
C; Capacity of utility 4
Two-stage
Demand Response 4 Stackelberg Game N\

= of Data Centers using ===\
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Real-time
Pricing
Game
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Algorithm
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.

Fig. 1. Functional space of the geo-distributed DCs’ DR on the left and
its transformed mathematical space as a two-stage Stackelberg game on the
right.

J

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider one-period DR as in [18] and [23], where its
duration, which is controlled by a utility/load serving entity,
matches an interval at which the DCs’ decisions and utilities’
real-time prices can be updated (such as 15 min or 1 h). Let
T =1{1,...,1} denote the set of sites with different electrical
utilities’ service regions where DCs are located. Such geo-
distributed DCs are very common in practice, e.g., Google,
Amazon, etc. Each DC i is powered by a local utility company
and have S; homogeneous servers. A DC with heterogeneous
types of servers can be viewed as multiple virtual DCs each
having homogeneous servers. For the ease of presentation,
Table I lists key notations of this paper.

We incorporate the role of utility into the DR programs of
DCs to regulate the power demand at each local site for load
balancing the power grid. We illustrate a functional space and
a mathematical space of this DR program in Fig. 1. In the
functional space, we leverage the idea of using the advanced
two-way communication of smart grid to facilitate the infor-
mation exchange between utilities and DCs at each local site
via smart meters. While utilities set prices to incentivize DCs

to flatten the demand over time and locations to increase the
power grid’s reliability, as the price-takers the DCs will min-
imize their costs. In the mathematical space, we observe that
there exists a special mutual interaction between DCs and
utilities where utilities set prices based on the total demand,
and DCs minimize their costs based on the prices. Therefore,
we transform this DCs’ DR program into a leader—follower
game that can be studied using a two-stage Stackelberg game.
Specifically, the utilities are the leaders that set the prices to
maximize their profits in Stage I and DCs will make their deci-
sions on workload shifting and dynamic server provisioning
to minimize their costs in Stage II. We present this two-
stage game formulation in the reverse sequence, starting with
Stage-II optimization problem.

A. DCs’ Cost Minimization in Stage 11

We first describe the workload model of a typical DC. We
then elaborate the DCs’ cost focusing on the energy cost and
delay cost model. Finally, we formulate the Stage-II DCs cost
minimization.

1) Workload Model: Even though DCs can support a wide
range of workloads, we generally classify them into two typ-
ical types of workload: interactive (noninterruptive) jobs and
batch (interruptive) jobs. While the former is delay-sensitive
(e.g., computing search, online game, etc.), the latter is delay-
tolerant (e.g., backup tasks, MapReduce, etc.). We assume that
each DC processes its batch jobs locally (i.e., batch jobs cannot
be redirected to other DCs for load balancing) since without
stringent delay constraint, they are flexible to be scheduled
across a large time window at a local site, like [19]. For
interactive jobs, we denote the total arrival rate to the DCs’
front-end server [i.e., all DCs are managed by a DCs service
provider (DCs provider)], by A and this front-end server is
responsible for splitting the total incoming workload A into
separate workloads of geo-dispersed DCs, denoted by {A;};c7.
Even though we only consider workload shifting, the other
control knobs for DR such as power load reduction (e.g., scal-
ing down CPU frequencies and/or turning off unused servers)
can also be integrated into our framework.

2) DCs Cost and SLA Model: We assume that the
DCs provider tries not only to minimize its energy cost
and migration cost but also to guarantee the service level
agreement (SLA) requirements for the interactive jobs.

a) Energy cost: Since batch jobs are flexible to sched-
ule in time domain, batch jobs processing is considered to
consume an amount of energy eﬁ’ of each DC i with their ded-
icated servers. On the other hand, the energy consumption of
interactive jobs at DC i is [2]

ezd = Si(Pidle + (Ppeak - Pidle) Ui+ (n— 1)Ppeak) (1

where s; is the number of active servers, u; is the service rate
of a server, Ppeak and Piqje are the server’s peak and idle power,
respectively, U; = X;/s;j; is the average server utilization, and
n is the power usage effectiveness (PUE) measuring the energy
efficiency of the DC. We can rewrite ef as follows:

e;»j =a;ri+bs;, Viel 2)
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where a; = (Ppeak — Pidle) /iti and b; = Pigle + (n — 1) Ppeak.
Therefore, denoting the total energy by

e = e? + ef 3)

and given a price p;, the energy cost of DC i is e;p;.

b) Migration cost: Since migrating the workload from
front-end server to geo-distributed DCs can be very costly
[e.g., migrating virtual machines or video content requests
over the Internet could be expensive due to reserving band-
width from an Internet service provider (ISP)], we model the
migration cost to DC i as wd;ci(};), where d; is the transmis-
sion delay from the front-end server to DC i, w is a weight
factor and c;(A;) is a function which is assumed to be strictly
increasing and convex. Since d; is proportional to the distance,
it is assumed to be a constant and we see that migrating more
requests from the front-end server to a more distant DC is
more costly. For analysis tractability, we choose a quadratic
function ¢;(%;) = Al-z since it is widely used in many fields
such as control, signal processing, communication networks,
etc. to model a cost function [24].

c) SLA constraint: We assume that each delay-sensitive
request imposes a maximum delay D; that the DCs provider
has to guarantee when shifting this request to DC i. Therefore,
the SLA constraint in terms of delay guarantee can be modeled
as follows:

—— +di <D;, Vi “)
Sifbi — Aj

where 1/(s;ju; — X;) is the average delay time of a request
processed in DC i with arrival rate A; and service rate s;i; by
queueing theory, which has been widely used as an analytic
vehicle to provide a reasonable approximation for the actual
service process [19], [25].

3) Problem Formulation: Our model focuses on two key
controlling “knobs” of DCs’ cost minimization: the workload
shifting to DC X; and the number of active servers provisioned
s; at site i, Vi. Then, the Stage-II DC cost minimization is
given by

I

DC : minimize Z eipi + a)d,-)\,-2 5)
i=1

subject to  constraints (2)—(4)

I

Y ri=A (6)
i=1

0<s; <8, Vi (7

0 <X <sip; Vi 3

variables s;, A;, Vi. 9)

While constraints (2)—(4) are the definitions of the objective
function and the SLA constraint, the remaining constraints are
straight forward. In (6), all of the incoming workload must be
served by some DCs. Moreover, (7) limits the number of active
servers and (8) means that the total workload assigned to a DC
must be less than its capacity. With thousands of servers in a
DC, we can further relax the integer variables s; as continuous
variables so that this problem is tractable [18].
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Fig. 2. Besides conventional wholesale and retail pricing, the utilities” DR
real-time pricing is proposed for geo-distributed DCs and other DR-enabled
customers.

B. Noncooperative Pricing Game in Stage |

In this stage, we first present the market structure. We
next describe the utility’s revenue and cost models and finally
formulate the noncooperative pricing game.

1) DR Retail Price: Traditionally utilities involve many
complex electricity markets. As buyers, utilities can partici-
pate in a wholesale market (day head, real-time balancing)
to buy electricity from the generating companies with whole-
sale prices. As sellers, utilities make profit by selling retail
to their customers with proper retail rates [5]. Since conven-
tional customers (i.e., no DR) have inelastic demand with
predictable patterns, utilities can predict and buy energy from
wholesale market, then resell it at the conventional retail rates.
However, DCs with workload shifting represent a new type
of elastic-demand customers, which makes utilities difficult to
predict their demands, impacting the grid’s stability. Therefore,
we propose a new DR retail pricing scheme for utilities to
serve the unpredicted and elastic customers, e.g., not just load-
shifting DCs but also for all DR-enabled customers. The basic
idea of this scheme is that utilities and these DR-enabled cus-
tomers can coordinate via smart-grid infrastructure to match
supply with demand. Fig. 2 illustrates that utilities can apply
the conventional and DR retail prices to their corresponding
customers, which are complementary to each other so that the
proposed scheme will not affect to the conventional scheme,
similar to [9], [17], and [26]. Since conventional markets
and customers are orthogonal to our model, henceforth, we
only consider utility’s profit model and the proposed real-time
pricing scheme for DR-enable customers.

2) Utility’s Revenue and Cost Model: We see that the opti-
mal energy consumption of DCs that can be obtained from
solving DC depends on all utilities’ prices. Denote the corre-
sponding optimal power demand by e;(p), where p := {p;};c7.
We further assume that due to the grid regulations at each
region, the lower and upper bound of the real-time price should
be imposed and denoted by pf and pY, Vi, t, respectively.
Furthermore, besides the power demand of DCs, each util-
ity has its own background load (e.g., residential/commercial/
industrial demand). Since there are considerable works focus-
ing on the residential DR programs, we assume that the
background load of utility i, denoted by B;(p;), also responds
to the price and can be modeled by the following function:

B, pi <p!
Bi(p) = {ai — Bipi, pPL<pi<p! (10)
B, pi = pt
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where Bﬁ and B} are the minimum of maximum background
demands of site i due to the physical constraints of con-
sumers (i.e., minimum and maximum power of electric devices
or vehicles). This function, which follows the linear demand
model in [27], shows an inherent response of customers to
the price: decrease the demand down to a lower-bound con-
straint when the price increases, and vice versa, where S; is
the decreasing slope and «; models the physical upper-bound
demand without price. Based on the history of customer’s
usage data, utilities can estimate «; and B; using some data
fitting methods, similar to [7]. Based on the total power
requested by DCs and background’s demands, the revenue of
utility i is given by

Ri(p) = (ei(p) + Bi(pi)pi. (11)

On the other hand, every utility incurs a cost when it serves
the customers’ load. When the load increases, the utility’s
cost also increases since normally blackouts happen due to
overload, which is a disaster to any utility. Hence, we can
model the utility’s cost based on a widely used electric load
index (ELI) as follows:

. . . 2
ei(p) Z‘Bl(pz)) C o (12)

where C; is utility i capacity, y reflects the weight of the cost,
and r; is a load ratio that measures the power load levels.
A very high r; can risk the utility’s stability. ELI is motivated
by the index measurement techniques used for load flattening
in a power grid [9], [28], [29]. We see that ELI can weight
different utilities’ load ratio r; by their capacities, providing
feeder load-balancing capability. On the other hand, a util-
ity with high y shows that it is more concerned about the
effect of ELI to the reliability, while a utility with low y has
more interest in making revenue and less concerned about the
instability’s threat.

3) Stage-I Pricing Game Formulation: In reality, the geo-
distributed utilities usually have no communication exchange
to optimize the social performance. Instead, each utility i has
its own goal to maximize its profit, which is defined as the
difference between revenue and cost as follows:

ui(pi, p—i) = Ri(p) — Ci(p)

where p_; denotes the price vector of other utilities except i.
This notation comes from an observation that there is a game
between utilities because the profit of each utility not only
depends on its energy price but also on the others’. Hence,
the Stage-I utility profit maximization game, denoted by UP =
(Z, {pi}ieT, {ui}ieT), 1s defined as follows.

1) Players: The utilities in the set Z.

2) Strategy: pf <pi<p}, Viel.

3) Payoff tunction: u;(p;, p—;), Vi € T.

Ci(p) = yBLL := yr{ C; = (

(13)

IV. TWO-STAGE STACKELBERG GAME:
EQUILIBRIA AND ALGORITHM

In this section, we first apply the backward induction
method to solve the Stackelberg game. Then, we propose an
iterative algorithm to reach an equilibrium of this game.

A. Backward Induction Method

1) Optimal Solutions at Stage II: We realize that the
Stage-II DCs’ cost minimization can be decomposed into inde-
pendent problems. Henceforth, we only consider a specific
time period and drop the time dependence notation for ease
of presentation. In this stage, DCs cooperate with each other
to minimize the total cost by determining the workload allo-
cation A; and the number of active servers s; at each DC 1.
It is easy to see that the DCs’ cost minimization is a convex
optimization problem.

First, we observe that constraint (4) must be active because
otherwise the DCs provider can decrease its energy cost by
reducing s;. Hence, we have (4) is equivalent to

si(Ai) = [i(h + DNi_l)T[

0

(14)

where [.]I is the projection onto the interval [x, y] and ﬁi =
D; — d;. In practice, most DCs can have a sufficient number
of servers to serve all requests at the same time due to the
illusion of infinite capacity of DCs [18]. Therefore, we adopt
sih) = 1/ i +ﬁi_l) in the sequel. By substituting this
s;i(A;) into the objective of DC, we have an equivalent problem
DC’ as follows:

1

DC’ : min. ;f,-(k,-) (15)
1

st Y h=A (16)
i=1

2 >0, Vi (17)

where

biD;”!
i '

It can be seen that DC’ is a strictly convex problem, which
has a unique solution. Since DCs provider likes to have A; >
0, Vi, in order to utilize all DCs resources, we characterize the
unique solution of DC’ and a necessary condition to achieve
this solution with the optimal A} > 0, Vi, as the following
result.

Lemma 1: Given a price vector p, we have the unique
solutions of Stage-II DC problem

b.
fih) = wdid} + pi (ai + j)ki +pi (eb +
1

V¥ — piA; 1 ~ -1 )
M= >0 and s = E(A;.*JFD,- ). Vi as)
only if
1
> ol = <dml._ax{p,~Ai} — Y piA; /di) / 2A (19)
i=1
where d = Zle 1/d;, A; = a; + b;j/u;, and v* =

1/dQwA + Y1, piAi/dy).

Since all parameters to calculate a)tlh are available to DC i,
we can consider condition (19) as a guideline for a DCs
provider to choose an appropriate weight factor w to ensure
that all DCs have positive request rates.
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2) Nash Equilibrium at Stage I: We continue to character-
ize the Nash equilibrium of the Stage-I game based on the
Stage-II solutions. From (13), we have

4@+&@»2
Ci

ui(pi. p—i) = (€ (p) + Bi(pi))pi — VCi<
(20)

where e (p) = (q;Af + bis¥) + €f (with A and s} obtained
from Lemma 1) and can be presented as follows:

A%pi (1
e?((piap—i) = ZCll)dl <ad - 1)
i \dd;
A; Aipi  A/A b;
SN AP TR T L @)
2wdd; pr d; dd; wiDj

In the noncooperative game, one of the most important ques-
tions is whether there exists a unique Nash equilibrium. In the
case of Stage-I game, we have the following definition of a
Nash equilibrium.

Definition 1: A price vector p¢ = {p{}icz is said to be
a Nash equilibrium if no utility can improve its profit by
unilaterally deviating its price from the Nash equilibrium

wi(pf. p%;) = ui(pi. ). pi < pi <pl. Vi.
Theorem 1: (Existence) There exist a Nash equilibrium of
the Stage-I UP game.
In this Stage-I game, given all other utilities’ strategies p_;,
a natural strategy of utility i is the best response strategy as
follows:

(22)

BRi(p-i) = arg max u;(p;, p—i), Vi
pi€P;

(23)

where P; = [pf, pi‘] In order to find the best response, we
set du;(p)/dp; = 0. Then, the iterative best response updates
can be obtained as follows:

(k)
12— e h(pY)
1 —yN;i/Ci (—=Ny)

k+1 k .
P = BR, (o) = i

Pi

(24)
where [.]p, denotes the projection onto P;, k represents the
iterations, N; := A?/2wd;(1/dd; — 1) — f;, and
A; Ajpj  AjA b;

X L — e Vi
2wdd; i d/ dd; wiD;

h(p—i) =

(25)

When all utilities play best response strategies, a Nash equi-
librium p® is a profile that satisfies pf = BR;(p?,), Vi, ie.,
every utility’s strategy is its best response to others’ strategies.
However, there are two issues here.

1) There is no condition for general games such that the

best responses converge to a Nash equilibrium.

2) Since multiple Nash equilibria can exist in the UP game,
how the best response can converge to a unique Nash
equilibria.

Hence, we next examine the convergence property of the

best response (24) to a unique Nash equilibrium by using the
concept contraction mapping.
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Fig. 3. Detailed operations of Algorithm 1, where red arrows represent

steps 3 and 5 and blue arrows correspond to step 4.

We briefly introduce contraction mapping and its properties,
all of which can be found in [30, Ch. 3]. Since many itera-
tive algorithms have the form xk+D = T(x(k)), k=0,1,...,
where x® € X c R”, the mapping T : X > X is called a
contraction if there is a scalar 0 < o < 1 such that

T =TI < ollx—yll, VryeX

where ||.|| is some norm defined on &". Furthermore, the map-
ping T is called a pseudo-contraction if T has a fixed point
x* e X [ie., x* = T(x*)] and

(26)

1@ ' < ofjr—x

, VxedX. Q7

Both contraction and pseudo-contraction have the geomet-
ric convergence rate property: suppose the mapping T has a
fixed-point, the sequence {x®'} generated by x**1 = T(x(®)
converges to a unique fixed point x* geometrically satisfying

Hx(k) _ | vk=o0 (28)

<ok Hx(o) —Xx

with any initial value x© e X.

Based on the above properties of contraction mapping and
Theorem 1, if we can show that the best response update (24)
is a contraction mapping, then we can guarantee its conver-
gence to a unique Nash equilibrium. Therefore, we establish
the following sufficient condition.

Theorem 2: (Convergence and Uniqueness) If

A; Zj#,'Aj/dj —A%Zi(l - l/(dﬂ?))
2B;dd;

2 .
w = wy = mlax

(29)

then starting from any initial point, the best response
updates (24) of the Stage-1 UP game is a contraction mapping
that converges to a unique Nash equilibrium p¢ geometrically.

B. Distributed Algorithm

We first describe the detailed operations of the proposed
algorithm. Next, we discuss practical implementation issues
of the algorithm.

1) Proposed Algorithm’s Operations and Convergence:
We continue proposing a distributed algorithm, shown in
Algorithm 1, which can achieve the Nash equilibrium. The
detailed operations of Algorithm 1 are illustrated in Fig. 3.
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Algorithm 1 DR of DC With Real-time Pricing

1: initialize: k = 0, € is arbitrarily small, pEO) = p?, Vi, and
w satisfies (29);
2: repeat
3: Utility i broadcasts its pgk) to all customers;
: The front-end server collects p® from all DCs,
updates e;“(p)(k) as (21) and sends it back to DC i, Vi;
5: Each DC i reports its e} (»® to the local utility;
Utility i receives the demand responses from the local
DC ¢ ()™ and background users B;(p)®), then updates
Pt = BRi(p"Y) as 24);
7: until [p*+D — p®| <€,

We assume that Algorithm 1 operates at the beginning of each
pricing update period (i.e., 1 h) and the algorithm runs for
many iterations (communication rounds with a parameter k)
until it converges to a price setting equilibrium. Here, based
on the total incoming workload, the front-end server of the
DCs provider first collects all prices from its local DCs and
calculates the optimal energy consumption as (21) (step 4).
After that, the front-end server will feedback these energy con-
sumption data to its local DCs, which then forwards its own
information to the local utility (step 5). Each utility solves its
own profit maximization problem (best response updates) to
find an optimal price, then broadcasts this price to its local DCs
and background customers (step 6). The process repeats until
the game converges to the unique Nash equilibrium accord-
ing to Theorem 2 (step 7). At this state the price setting is
finalized and applied to the whole considered period.

Even though Algorithm 1 is presented in a scalable and syn-
chronous fashion (i.e., all local utilities update and broadcast
their prices at the same time), asynchronous distributed algo-
rithm is preferred since in reality, the message-passing among
front-end server, DCs and utilities usually incurs heteroge-
neous delays. Fortunately, with condition (29), Algorithm 1
can also work asynchronously since (29) is derived from estab-
lishing a contraction mapping with respect to a maximum
norm ||.||c0, Which guarantees the asynchronous convergence
of the mapping sequence [30, p. 431].

2) Practical Issues and Implementation Discussion: We
discuss two issues here: the workload shifting assumption and
the message-passing.

In terms of the former, we assume the DCs provider deploys
a front-end server to distribute the incoming workload to DCs.
This can be done by using various practical solutions such as
incorporating the authoritative DNS servers (which is used by
Akamai) or HTTP ingress proxies (which is used by Google
and Yahoo) into the front-end servers. Furthermore, in reality
there is only a sub-set of DCs to which a workload type can be
routed to due to the availability resource constraint of each DC.
This issue can be easily addressed by incorporating additional
constraints into our model such as [31], and in practice we can
implement it by classifying the workload types at the front-end
server before routing.

In terms of the later, we assume that the two-way commu-
nication between a DC and its local utility can be enabled via

communication networks of future smart grid. Regarding to
the communications between DCs and its front-end server, a
DC reports its utility’s price by choosing one of the egress
links of its ISP to send its packet through the Internet to the
front-end server, and vice versa. Specifically, the total time of
one iteration consists of the transmission time and computa-
tional time. While the transmission time from utilities to DCs
(and vice versa) is from 1 to 10 ms over a broadband speed
of 100 Mb/s, it is from 50 to 100 ms for a one-way commu-
nication between DCs and the front-end servers over a current
ISPs path. The computational time depends on the processing
power of the front-end server and smart meters on calculat-
ing the optimal energy (21) and maximizing the convex profit
function (21), which are both low-complexity problems and
can be in the time-scale of microsecond [24].

V. TRACE-BASED SIMULATIONS

In this section, we conduct trace-based simulations, imple-
mented in the Python language with existing libraries includ-
ing NumPy, SciPy, and Matplotlib, to validate our analysis and
evaluate the performance of Algorithm 1.

A. Setups

We consider six geo-distributed DCs powered by their local
utilities at the following ordered locations: 1) the Dalles, OR;
2) Council Bluffs, IA; 3) Mayes County, OK; 4) Lenoir,
NC; 5) Berkeley County, SC; and 6) Douglas County, GA.
These locations correspond to real Google’s DCs [32]. All
DCs’ PUEs are set to 1.5 over time periods. The homoge-
neous servers have peak power of 200 W and idle power of
100 W, and the service rate of each server is chosen uni-
formly between 1.1 and 1.2. The migration weight w is set to
1 unless otherwise stated. The delay SLA D; are distributed
uniformly between 100 and 300 ms and d; is scaled by the
vector [1.9, 1.0, 1.3, 2.5, 2.8, and 2.3] in which we assume
that the front-end server is placed at Colorado.

We use realistic traces for the incoming workload A at the
front-end server and the power demand of delay-tolerant batch
jobs e, at each DC. All of them are scaled with respective to
service rates. We use an interactive workload trace collected
from Microsoft Research (MSR) [33]. The workload can be
predicted to a fairly reasonable accuracy using, e.g., regres-
sion techniques [3], [33]. Furthermore, we use Google trace
for the power demand of delay-tolerant batch jobs e;, in recent
study [34]. The batch job power demand and workload series
spans over 30 days corresponding to a typical utility billing
cycle and each point of series is a 1-h period.

Since lacking the public information of local utilities, we
assume that all utilities have the capacities C; uniformly in
the range of 25 and 30 MW, which is a standard measure for
a medium-size utility. While y is set to 1 unless otherwise
stated, «; and B; parameters are chosen uniformly in the range
of [25, 30] and [0.25, 0.30], respectively.

We consider two baseline pricing schemes for comparison.
The first baseline is based on the proposed dynamic pricing
scheme of [8], which is briefly described as follows:

pi(t+1) = 8(PD;(1) — PS;(1)) + pi(1) (30)
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Fig. 5. Proportion of local DC demand over utility’ total demand at Mayes
County (top) and Lenoir (bottom).

where PD; and PS; are the power demand and supply of util-
ity i. We set 6 to 0.5 in all simulation scenarios. This baseline
serves as a recent related benchmark.

The second baseline is based on the Google’s contract
with their local utilities. According to the empiri-
cal study in [32], there are six Google’s DCs at six
mentioned locations, where Google’s DCs are inferred
to have long-term contracts with their local utili-
ties as the following fixed rates (i.e., energy charges)
[32.57, 42.73, 36.41, 40.68, 44.44, and 39.97] $/Wh,
respectively. This baseline serves as an in-reality benchmark.
We mainly use this baseline for the PAR comparisons since:
1) the Google long-term contract often negotiates a monthly
electricity bill scheme that combines energy charges and
demand charges that we do not know exactly, which can then
influence the DCs’ cost and utilities” profit and 2) it is not
fair to compare a dynamic pricing scheme to a snapshot static
pricing scheme in terms of cost and profit.

B. Results

We first provide the sample-path optimal prices of three
schemes at six locations in Fig. 4. In all periods, we observe
that Algorithm 1 can converge in less than ten iterations,

[TETLrE it NASERNN
100 200 300 400 500 600 700
Hour

TABLE II
AVERAGE OPTIMAL PRICES COMPARISONS WITH y EFFECT

. MSR
Sites

Baseline | Alg. 1 Alg. 1 Alg. 1
1 y=1 =4 y=38
1 40.32 20.75 21.20 21.77
2 88.23 35.74 36.66 37.81
3 62.78 28.32 29.01 29.88
4 31.82 17.02 17.34 17.75
5 28.54 15.82 16.10 16.45
6 33.96 18.02 18.38 18.83

where the stopping condition € = 10~*. Since Baseline 1 and
Algorithm 1 employ dynamic pricing mechanisms, we observe
that the utilities’ prices of these two schemes vary according
to the workload pattern. We also observe the effect of migra-
tion cost to the optimal prices in this Fig. 4. Since the nearest
DCs to the front-end server are sites 2 and 3, Fig. 4 shows
that all dynamic pricing schemes set high prices at these two
sites compared with the other sites. This can be explained as
follows, due to the small migration cost at these sites which
leads to high demand, the dynamic schemes set high prices to
balance between energy cost and migration cost. Furthermore,
we observe that Algorithm 1 can contribute less load to util-
ities than other schemes do most of the time; for example,
this can be seen in Fig. 5 that shows the proportion of DCs’
demand over utilities’ total demand variations in three days at
two sites.

Furthermore, we also investigate the effect of y to the pric-
ing schemes. Table II shows that if we increase y, then the
Algorithm 1s optimal prices also increase since the higher the
weight utilities’ ELI cost factor is, the more conservative util-
ities are in terms of reliability by raising the prices. Finally,
we can see that Baseline 1 always overprices Algorithm 1
in all scenarios since Baseline 1 is more aggressive than
Algorithm 1 in terms of balancing the supply and demand.
However, it could lead to high demand fluctuations (i.e., high
PAR) as shown in the following results. We also observe that
the average prices of Algorithm 1 are not affected by w.
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We also evaluate the effect of parameter y to average
DCs’ cost and utilities’ profit in Fig. 6. First, we can see
that Baseline 1 with higher prices has higher DCs’ cost and

utilities’ profit than those of Algorithm 1. In details, the
share of DCs’ energy cost of Algorithm 1 is 36.3%, 37.8%,
and 38.7% when y = 1,4, and 8, respectively, whereas
that of Baseline 1 (without y impact) is 44.8%. Therefore,
Algorithm 1 can give more incentives to encourage the DCs
to join the DR program.

Second, we can see that when y increases, the utilities’
profit of both schemes decrease according to (20). Since the
pricing scheme of Baseline 1 is independent with y, we can
see that y has no effect to the DCs’ cost of this baseline.
However, we see that DCs’ cost of Algorithm 1 increases
when y increases due to the corresponding increase of the
optimal prices [see(20)]. With Algorithm 1, we see that small
y is favorable because it can provide low DCs’ cost and high
utilities profit. Furthermore, due to the background demand,
we see that DCs’ cost including the migration cost is lower
than utilities” profit.

The final factor that we examine is the power demand
PAR at each site, which is one of the most important
metrics to measure the effectiveness of designs for smart
grid since the fluctuation of energy consumption between
peak and off-peak hours indicate power grid’s reliabil-
ity and robustness. PAR is calculated as max{e} (p(t)+
B,-(p,-(t))}T/Zthle:-“(p(t)) + Bi(pi(t)). Reducing PAR is the
important goal of any DR program designs. Therefore,
we extensively compare the PAR of three schemes with
different y in Fig. 7(a)-(c). The most important obser-
vation is that PARs performance of Algorithm 1 outper-
forms those of other schemes, either static or dynamic
pricing, over time and space significantly. Specifically, con-
sidering the case y = 1, Fig. 7(a) shows that for all
sites 1-6, Algorithm 1 can achieve the lowest PAR value
as expected, reducing the PAR to 32.3%, 27.0%, 28.1%,
28.0%, 25.8%, and 29.4% compared to Baseline 1, and
31.6%, 16.7%, 22.2%, 33.5%, 34.0%, and 34.0% compared
to Baseline 2, respectively. We conclude that Algorithm 1
can spread out the demand not only over time but also over
locations.

VI. CONCLUSION

We have investigated the DR of geo-distributed DCs with
the help of emergence techniques of smart grid. We first char-
acterize the challenged dependencies of this geo-distributed
DCs’ DR program where a utility’ decisions not only depends
on that of DCs, and vice versa, but also impacts on other util-
ities’ decisions. We then formulate this DR program into a
two-stage game to model these dependencies. In this game,
the role of each utility is setting a price to maximize its profit,
while the DCs minimize its cost by workload shifting and
dynamic server allocation. We then characterize the existence
and uniqueness of the Nash equilibrium of this game, and
develop an iterative and distributed algorithm to reach this
equilibrium. By using trace-based simulations, we validate and
complement our proposal with the simulation results, which
shows that our pricing schemes based on the two-stage game
can flatten the energy demand of DCs over time and locations
to increase the power grid’s reliability and robustness.
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APPENDIX A
PROOF OF THEOREM 1

Since the strategy space of each utility i is a nonempty
compact and convex subset of Euclidean space, it is sufficient
for us to show that the continuous function u;(p;, p—;) on this
strategy space is a quasi-concave function, Vi, such that there
exists a Nash equilibrium for Stage-I game [35].

From (10) and (21), it can be seen that ef(p) and B;(p;) are
affine functions of p;. Therefore, (e} (p) + Bi(pi))? is a con-
vex function [24]. Furthermore, we have BZ(B,-(p,-)pi) / Bpl-2 =
—Bi <0, Viand 3%(eX(p)pi)/dp? = A? 2wd;(1/dd; — 1) < 0,
Vi, since Eidl- > 1, Vi. Hence, both ¢} (p)p; and B;(p;)p; are con-
cave functions. Therefore, from (20) we see that u;(p;, p—;) is
the sum of two concave functions so that is also a concave
(and hence quasi-concave as well) function.

APPENDIX B
PROOF OF THEOREM 2

We first seek the condition such that the best response
update (24) is a contraction mapping. Define a Cartesian prod-
uct space P = I1;c7P; and a vector BR(p) == (BR;(p—-i))ic1-
Since BR(p) is continuous and differentiable on by P, by the
mean value theorem, we have
IBR®) H Ip1 (3D

ap

IBR(p1) — BRI = =2l

Vp1,p2 € P, and p is on the segment connecting p; and p».
Furthermore, the Jacobian dBR(p)/dp is as follows:

Vj=i
Vj #£ i
Then, by using the norm ||.||c of the Jacobian, from (26)
and (31), we see that (24) is a contraction mapping when
dBR(p)
ap
— 1/2 = yNi/Ci A
i | = [ (=N — yNi/Ci) 2wdd;d;
J# 7
It is straightforward to see that the sufficient condition to
satisfy (32) is max;{A;/|2wdd;N;] Zj;éiAj/dj} < 1, which is
equivalent to
AV Y hi/ds = a2(1 = 1/(did))
® > max -
{ 2Bidd;

IBRi(p—) _ |0

1/2—yN;/C; AjA;
8]7] /2=yNi/Ci ilj

EN)U=yNi/CD) 20ddd;”

<1. (32)

(33)

We have shown that with condition (33), the best response
update is a contraction mapping. Furthermore, according to
Theorem 1, we have the existence of a fixed-point of the
mapping (24). Hence, based on the convergence property of
contraction mapping, we complete the proof.
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