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Abstract—This paper presents a three-phase iterative direct
current optimal power flow (DCOPF) algorithm with fictitious
nodal demand. Power losses and realistic distribution system
operating constraints such as line flow limits and phase imbalance
limits are carefully modeled in the DCOPF formulation. The def-
inition of locational marginal prices (LMPs) is extended to three-
phase distribution systems. The three-phase LMP decomposition
is derived based on the Lagrangian function. The proposed algo-
rithm is implemented in an IEEE test case and compared with
three-phase alternating current optimal power flow (ACOPF)
algorithm. The simulation results show that the proposed DCOPF
algorithm is effective in coordinating the operations of distributed
energy resources (DERs) and managing phase imbalance and
thermal overloading. The proposed iterative three-phase DCOPF
algorithm provides not only a computationally efficient solution
but also a good approximation to the ACOPF solution.

Index Terms—demand response, distribution system operator,
locational marginal price, three-phase DCOPF.

NOMENCLATURE

Bpmik , G
pm
ik Susceptance and conductance between node i

with phase p and node k with phase m.
Cd (n,m)j Demand bid price of the j-th segment of price

sensitive demand bid curve at node n with
phase m.

Cg (1)i Supply offer price of the i-th segment of
supply offer curve at the reference bus.

Cg (n,m)i Supply offer price of the i-th segment of
supply offer curve at node n with phase m.

d (n,m)j Demand bid quantity of the j-th segment of
price sensitive demand bid curve at node n
with phase m.

(DF ts)p Phase p’s delivery factor at node s with phase
t.

FDg
i Real power of fixed demand at node i with

phase g.
FP, FQ Set of real and reactive power branch flows.
FP pb , FQ

p
b Real and reactive power flow on branch b

with phase p.
g (n,m)i Supply offer quantity of the i-th segment of

supply offer curve at node n with phase m.
GSFP p gik q Generation shift factor for real power flow of

the branch which connects node i and k with
phase p when power injection is at node q
with phase g.

GSFQp gik q Generation shift factor for reactive power
flow of the branch which connects node i and
k with phase p when power injection is at
node q with phase g.

J1 Total number of segments of demand bid
curve at the reference bus.

Jmn ,K
m
n Total number of segments of supply offer

curve and demand bid curve at node n with
phase m.

Iik, Vik Current and voltage across the branch con-
necting node i and k.

(LF ts)p Phase p’s loss factor at node s with phase t.
N Total number of nodes including the swing

bus.
PDm

n Real power of total demand at node n with
phase m.

PGmn Real power of generation at node n with
phase m.

P pi , Q
p
i Net injection of real and reactive power at

node i with phase p.
P pik, Q

p
ik Real and reactive power flowing from node i

to node k with phase m.
P ploss Total real power losses at phase p.
PLimitpik Real power flow limit between node i and k

with phase p.
Rpgik , X

pg
ik Resistance and reactance of the phase

impedance matrix relating node i with phase
p and node k with phase g.

Spik Complex power flowing from node i to node
k with phase m.

(Sloss)ik Complex power losses of the branches con-
necting node i and k.

SLimitpik Complex power flow limit between node i and
k with phase p.

Zik Phase impedance matrix of the line connect-
ing node i and k.

γ Power imbalance limit between phases.
θV

pm
ik ,θI

pg
ik Voltage angle difference and current angle

difference between node i with phase p and
node k with phase m.



I. INTRODUCTION

Traditionally, the OPF problem is formulated at the trans-
mission system level to find the optimal dispatch levels of
generation power plants to meet electricity demand with
least cost. The LMP concept not only effectively manages
congestion in market operations but also provides guidance
to future generation and transmission upgrades. The LMP
decomposition method makes cost of congestion transpar-
ent. Driven by strict environmental regulations, distributed
renewable generation, demand response, and energy storage
devices are being deployed in the distribution system at an
unprecedented speed. Three-phase OPF problem needs to be
effectively solved by distribution system operators in order to
efficiently utilize DERs and operate distribution system in a
reliable and efficient manner.

Many researchers have studied the problem of DERs co-
ordination and management. In [1], the concept of LMP
for distribution system is first proposed in order to manage
distribution generation (DG) resources and reduce lines losses.
A real-time pricing strategy is used to schedule load with a
linear-programming (LP) method in [2]. Researchers in [3]
provide a two-stage pricing approach for residential demand
response management. In [4], [5], an innovative proactive
demand participation scheme is proposed under two-stage
pricing framework with demand bid curve forecasting. To
mitigate power quality issues of micro-grid, a mixed integer
programming (MIP) approach is studied in [6].

However, only a few papers studied the three-phase OPF
problem. A quasi-Newton method based approach is developed
after transforming the OPF problem with implicit function the-
orem in [7]. Authors in [8] developed a distributed semidefinite
programming solver based on alternating direction method of
multipliers (ADMM) for non-convex optimization problem of
three-phase alternate current optimal power flow (ACOPF).
A comparison of three distributed OPF algorithms including,
the auxiliary problem principle (APP), the predictor correc-
tor proximal multiplier method (PCPM), and the alternating
direction method (ADM), is conducted in [9]. The main
challenge of transforming the original ACOPF problem into
a convex optimization problem is the rank constraint. In
order to convexify the original ACOPF problem, some recent
literatures directly relax the rank constraint [8], [10]–[13].
However, the global optimality is only proved for single-
phase tree-networks [14], [15]. Rank reduction techniques can
be leveraged to develop heuristic algorithms that solve rank-
constrained optimization problems [16]–[18]. However, the
convergence of these algorithm cannot be guaranteed.

A regional distribution system typically has thousands of
feeders with millions of nodes. It is computationally challeng-
ing to solve thousands of convexified large-scale three-phase
ACOPF problems in real time. This paper fills the knowledge
gap by extending the iterative single-phase DCOPF algo-
rithm [19] to three-phase system with fictitious nodal demand
(FND). The proposed iterative three-phase DCOPF algorithm
provides not only a computationally efficient solution but also

a good approximation to the ACOPF solution. In addition,
none of the existing literatures have touched on the subject of
LMP decomposition in three-phase distribution system. This
paper presents a generalized three-phase LMP decomposition
within the DCOPF framework.

The remainder of this paper is organized as follows. Section
II formulates the linear model of three-phase DCOPF problem.
Section III derives three-phase LMP decomposition from the
Lagrangian function. The numerical study results are presented
in Section IV. The conclusions are stated in Section V.

II. THREE-PHASE ITERATIVE DCOPF FORMULATION

A. Linear Model without Considering Loss
The objective of three-phase DCOPF problem is to maxi-

mize total surplus of customers and producers in a distribution
system. On the supply side, an equivalent system supply offer
curve is created at the point-of-integration to the transmission
system. On the demand side, individual buildings and cus-
tomers express their energy usage preferences by constructing
price-sensitive demand bid curves [4]. Node 1, the point-
of-integration to the transmission system, is selected as the
swing bus of the distribution system. Note that there is only
one supply offer curve for all three phases at the distribution
substation. The objective function of the DCOPF problem is
provided in equation (1). Without considering losses, the real
power balance constraints are represented by equation (2). In
subsection II.C, these constraints are modified when real power
losses are taken into consideration. Equation (3) shows the
power flow limit constraints. Generating shift factors used in
the equation are derived in subsection II.B. Phase imbalance
constraints are represented in equation (4), which have been
shown to be effective in mitigating phase imbalance problems
in [3].

max
d

N∑
n=2

3∑
m=1

Km
n∑

j=1

Cd (n,m)j d (n,m)j

−
Jm
n∑
i=1

Cg (n,m)i g (n,m)i

− J1∑
i=1

Cg (1)i g (1)i (1)

subject to:
N∑
n=1

PGmn =

N∑
n=1

PDm
n ,m = 1, 2, 3 (2)

|
N∑
q=2

3∑
g=1

GSFP p gik q ·
(
PGgq − PDg

q

)
| ≤ PLimitpik,

∀i, k and i 6= k (3)

|
N∑
n=2

P in −
N∑
n=2

P jn| ≤ γ, i, j = 1, 2, 3 and i 6= j (4)

where

PLimitpik =

√√√√(SLimitpik)2 − (

N∑
q=2

3∑
g=1

GSFQp gik q ·Q
g
q)2



B. Derivation of Generation Shift Factors

The relationship between real power injection and voltage
angle is derived by differentiating load flow equation with
respect to θV . We start the derivation from equations (5)-(6)
[20]:

∂P pi
∂θV

m
k

= |V pi ||V
m
k |[G

pm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik ],

p 6= m or i 6= k (5)

∂P pi
∂θV

p
i

= −Bppii (V pi )2 −Qpi (6)

Under most operational scenarios, the voltage drop and
voltage angle bias are small when the distribution network
is not heavily loaded or seriously unbalanced. When large
voltage drop happens, step-type voltage regulators, load tap
changing transformers, and shunt capacitors will be operated
to keep customers’ voltage within an acceptable range. Thus
the following assumptions are made:

|V pi | ≈ 1 (7)

θV
pm
ik ≈


120◦ if p−m = −1, 2

−120◦ if p−m = 1,−2

0◦ if p−m = 0

(8)

With the above assumptions, equations (5) and (6) can be
simplified as:

∂P pi
∂θV

m
k

= Gpmik sinθV
pm
ik −B

pm
ik cosθV

pm
ik ,

p 6= m or i 6= k (9)

∂P pi
∂θV

p
i

= −Bppii −Q
p
i (10)

Excluding the swing bus, in condensed form equations (9)-
(10) become:

∆P = [BP ]∆θV (11)

where [BP ] is a 3 (N − 1)× 3 (N − 1) matrix.
The relationship between reactive power injection and volt-

age magnitude is derived by differentiating load flow equation
with respect to V [20]:

∂Qpi
∂V mk

= |V pi |[G
pm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik ],

p 6= m or i 6= k (12)

∂Qpi
∂V pi

=

N∑
k=1

3∑
m=1

|V mk |[G
pm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik ]

−|V pi |B
pp
ii cosθV

pp
ii (13)

With the same assumption above, equation (12) can be
simplified as:

∂Qpi
∂V mk

= Gpmik sinθV
pm
ik −B

pm
ik cosθV

pm
ik

p 6= m or i 6= k (14)

As the shunt component is usually very small

N∑
k=1

Bpmik ≈ 0,

N∑
k=1

Gpmik ≈ 0, m = 1, 2, 3

Thus

∂Qpi
∂V pi

≈ −Bppii (15)

Excluding the swing bus, in condensed form equations (13)-
(14) become:

∆Q = [BQ]∆V (16)

where [BQ] is a 3 (N − 1)× 3 (N − 1) matrix.
The complex power flowing from node i to k with phase p

is given by (17):

Spik = V pi

3∑
m=1

[(Gpmik + jBpmik ) (V mi − V mk )]∗ (17)

By separating the real and imaginary part of complex branch
flow equation (17), we get equations (18) and (19).

P pik =

3∑
m=1

{|V pi ||V
m
i |cosθV

pm
ii G

pm
ik − |V

p
i ||V

m
k |cosθV

pm
ik G

pm
ik

+ |V pi ||V
m
i |sinθV

pm
ii B

pm
ik − |V

p
i ||V

m
k |sinθV

pm
ik B

pm
ik }
(18)

Qpik =

3∑
m=1

{|V pi ||V
m
i |sinθV

pm
ii G

pm
ik − |V

p
i ||V

m
k |sinθV

pm
ik G

pm
ik

− |V pi ||V
m
i |cosθV

pm
ii B

pm
ik + |V pi ||V

m
k |cosθV

pm
ik B

pm
ik }
(19)

Equation (18) can be simplified as follows by the assuming
|V pi | ≈ 1.

P pik=

3∑
m=1

2Bpmik sin

(
θV

p
i − θV

m
i − θV

p
i + θV

m
k

2

)
cos

(
θV

p
i − θV

m
i + θV

p
i − θV

m
k

2

)
−

3∑
m=1

2Gpmik sin

(
θV

p
i − θV

m
i − θV

p
i + θV

m
k

2

)
sin(

θV
p
i − θV

m
i + θV

p
i − θV

m
k

2
) (20)

If we assume balanced voltage angles,

θV
p
i − θV

m
i + θV

p
i − θV

m
k ≈


240◦ if p−m = −1, 2

−240◦ if p−m = 1,−2

0◦ if p−m = 0

We have sinθV
mm
ik ≈ θV

mm
ik . Now equation (20) can be

simplified as follows.

P pik =

3∑
m=1

(BP
pm
ik )

”
(θV

m
i − θV

m
k ) (21)



where

(BP
pm
ik )

”
=


1
2B

pm
ik +

√
3

2 G
pm
ik if p−m = −1, 2;

1
2B

pm
ik −

√
3

2 G
pm
ik if p−m = 1,−2;

−Bpmik if p−m = 0.

According to equation (21), the change in real power branch
flow ∆PB can be represented in condensed form as:

∆PB = [DP ][A]∆θV (22)

where ∆PB is a 3L × 1 vector. L is the total number of
branches. [DP ] is a 3L×3L matrix, whose off-diagonal 3×3
blocks are zeros. Let DP b denote the b-th 3×3 diagonal block
connecting bus i and bus k

DP b =


−B11

ik
1
2B

12
ik +

√
3

2 G
12
ik

1
2B

13
ik −

√
3

2 G
13
ik

1
2B

21
ik −

√
3

2 G
21
ik −B22

ik
1
2B

23
ik +

√
3

2 G
23
ik

1
2B

31
ik +

√
3

2 G
31
ik

1
2B

32
ik −

√
3

2 G
32
ik −B33

ik


[A] is a 3L × 3(N − 1) node-arc incidence matrix. [A] is

compromised of L× (N − 1), 3 by 3 blocks. Each row of the
3× 3 blocks represents a three-phase branch. Each column of
the 3× 3 blocks represents a bus. Let [Aij] be the ij-th 3× 3
block of [A].

Diagonals of Aij =


1 if branch i starts at node j

−1 if if branch i ends at node j

0 otherwise

The non-diagonal elements of [Aij] are zeros.
Substituting equation (11) into (22) yields

∆PB = [DP ][A]∆θV

= [DP ][A][BP ]−1∆P
(23)

Therefore, three-phase generation shift factor matrix for real
power flow is derived as:

[GSFP ] = [DP ][A][BP ]−1 (24)

With |V pi | ≈ 1 and the balanced angle assumption:

θV
pm
ii ≈ θV

pm
ik =


120◦ if p−m = −1, 2;

−120◦ if p−m = 1,−2?

0◦ if p−m = 0.

Equation (19) can be simplified as:

Qpik =

3∑
m=1

(Gpmik sinθV
pm −Bpmik cosθV

pm) (|V mi | − |V mk |)

(25)
Therefore

Qpik =

3∑
m=1

(BQ
pm
ik )

′′
(|V mi | − |V mk |) (26)

where

(BQ
pm
ik )

”
=


1
2B

pm
ik +

√
3

2 G
pm
ik if p−m = −1, 2;

1
2B

pm
ik −

√
3

2 G
pm
ik if p−m = 1,−2;

−Bpmik if p−m = 0.

According to equation (26), the change in reactive power
branch flow ∆QB can be represented in condensed form as:

∆QB = [DQ][A]∆V (27)

where QB is a 3L×1 vector. L is the total number of branches.
DQ is a 3L × 3L matrix, whose off-diagonal 3 × 3 blocks
are zeros. Let the DQb denote the b-th 3 × 3 diagonal block
connecting node i and node k.

DQb =


−B11

ik
1
2B

12
ik +

√
3

2 G
12
ik

1
2B

13
ik −

√
3

2 G
13
ik

1
2B

21
ik −

√
3

2 G
21
ik −B22

ik
1
2B

23
ik +

√
3

2 G
23
ik

1
2B

31
ik +

√
3

2 G
31
ik

1
2B

32
ik −

√
3

2 G
32
ik −B33

ik


Similarly, with equations (16) and (27), three-phase generation
shift factor matrix for reactive power flow is derived as:

[GSFQ] = [DQ][A][BQ]−1 (28)

The derivations of three-phase GSFs have the same form as
single-phase GSF matrix. However, matrices [DP ], [DQ], [A],
[BP ] and [BQ] are constructed in a different way. Intuitively,
the differences arise from the mutual coupling among three
phases of distribution system line. All of the non-diagonal
elements of [D] in single-phase GSF equation are zeros, while
non-diagonal elements of diagonal 3 by 3 blocks of [DP ] and
[DQ] in three-phase GSF equations are typically non-zero.
In three-phase equations [BP ] and [BQ] are constructed with
conductance and susceptance from the admittance matrix Y.

C. Centralized Loss Model

The power loss on each branch can be written as:

(SLoss)ik = Vik · Iik∗ = (ZikIik) · Iik∗

=



Z11
ik Z12

ik Z13
ik

Z21
ik Z22

ik Z23
ik

Z31
ik Z32

ik Z33
ik

 Iik
 · Iik∗ (29)

For each phase, we have:

(SLoss)
p
ik = Ipik

∗
3∑
g=1

Zpgik I
g
ik (30)

where Zpgik is the element of phase impedance matrix relating
node i with phase p and node k with phase g. Ipik

∗
=

|Ipik|e−jθ
p
ik and Igik = |Igik|ejθ

g
ik

Assume |Igik| ≈ |I
p
ik|, for p 6= g, then (30) can be simplified

as:

(SLoss)
p
ik = |Ipik|

2
3∑
g=1

Zpgik (cosθI
pg
ik − j · sinθI

pg
ik )

= |Ipik|
2

3∑
g=1

(Rpgik + jXpg
ik ) (cosθI

pg
ik − j · sinθI

pg
ik )

(31)



The real part of (31) is the real power loss,

(PLoss)
p
ik =

3∑
g=1

|Ipik|
2

(Rpgik cos θI
pg
ik +Xpg

ik sin θI
pg
ik )

=

3∑
g=1

|Spik|2

|V pi |2
Rpgik

′ (32)

Where the equivalent resistance obtained from phase
impedance matrix relating node i with phase p and node k with
phase g is defined as: Rpgik

′ ∆
= Rpgik cos θI

pg
ik +Xpg

ik sin θI
pg
ik .

If balanced current angle is assumed,

θI
p
i − θI

g
k =


120◦ if p− g = −1, 2

−120◦ if p− g = 1,−2

0◦ if p− g = 0.

Then

Rik
′ =

R11
ik −1

2
R12
ik +

√
3

2
X12
ik −1

2
R13
ik −

√
3

2

13

ik

−1

2
R21
ik −

√
3

2
X21
ik R22

ik −1

2
R23
ik +

√
3

2
X23
ik

−1

2
R31
ik +

√
3

2
X31
ik −

1

2
R32
ik −

√
3

2
X32
ik R33

ik


If we assume |V pi | ≈ 1, then (32) can be simplified as:

(PLoss)
p
ik =

3∑
g=1

|Spik|
2Rpgik

′
=

3∑
g=1

(|P pik|
2+|Qpik|

2)Rpgik
′ (33)

Therefore we have

P pLoss = P pLoss(FP ) + P pLoss(FQ) (34)

where

P pLoss(FP ) =

B∑
b=1

3∑
g=1

(FP pb)
2
Rpgb

′

P pLoss(FQ) =

B∑
b=1

3∑
g=1

(FQpb)
2
Rpgb

′

where B is the total number of branches. FP pb and FQpb are
real and reactive power flow on branch b at phase g. FP and
FQ are the set of real and reactive branch flows respectively.
F pb can be obtained with GSFs and power injections:

FP pb =

N∑
q=2

3∑
m=1

GSF p mb q Pmq (35)

FQpb =

N∑
q=2

3∑
m=1

GSF p mb q Qmq (36)

Phase p’s marginal loss factor (LF) at bus s with phase t is
defined as follows:

(LF ts)p
∆
=
∂P pLoss
∂P ts

=

B∑
b=1

3∑
g=1

2Rpgb
′ ·GSFP p tb s

N∑
q=2

3∑
m=1

GSFP p mb q Pmq (37)

Phase p’s marginal delivery factor (DF) at bus s with phase
t is defined as following:

(DF ts)p
∆
=

{
1− (LF ts)p, t = p,

−(LF ts)p, t 6= p
(38)

Loss factor and delivery factor are keys to deriving marginal
loss component of LMP. The definitions of three-phase LF and
DF are similar to that of single-phase. However, from Equa-
tion (38), we can clearly see that in three-phase distribution
systems, power losses of one phase is influenced by net loads
of the other phases. Delivery factor (DF ts)p is the amount of
power delivered from phase p when the load on node s with
phase t increases by 1KW. When t equals p, DF is the sum
of increase of load and power losses due to real power flow
on phase p. Otherwise, DF is equal to the increase in power
losses due to real power flow on phase p.

With the definitions above, it can be proved that

N∑
s=1

3∑
t=1

(DF ts)p ·
(
PGts − PDt

s

)
=

N∑
s=1

3∑
t=1

(DF ts)pP ts

=

N∑
s=1

P ps −
N∑
s=1

3∑
t=1

[(
B∑
b=1

3∑
g=1

2 ·Rpgb
′
GSFP p tb sFP

p
b

)
· P ts

]

=

N∑
s=1

P ps −
B∑
b=1

3∑
g=1

(
2 ·Rpgb

′
FP pb

N∑
s=1

3∑
t=1

GSFP p tb sP
t
s

)

=

N∑
s=1

P ps − 2

B∑
b=1

3∑
g=1

Rpgb
′
(FP pb)

2

= −P pLoss(FP ) + P pLoss(FQ) (39)

Thus the real power balance constraints become:

N∑
i=1

3∑
m=1

(DFmi )p · PGmi −
N∑
i=1

3∑
m=1

(DFmi )p · PDm
i

+P pLoss(FP )− P pLoss(FQ)=0, p = 1, 2, 3 (40)

D. FND Model

Adopting FND can distribute system losses among distri-
bution lines to eliminate significant mismatch at the reference
bus. FND-based DCOPF yields a closer approximation to the
results of ACOPF, as shown in [19]. Epi , FND at bus i with
phase p, is defined as following:

Epi =
1

2

Bi∑
b=1

3∑
g=1

[(FP gb )
2

+ (FQgb)
2
]Rpgb

′ (41)

where Bi is the number of branches connected to bus i. With
FND, the power injection at each node becomes:

Pmq = PGmq − PDm
q − Emq (42)

Using FND, branch flow equation (35) can be updated as:

FP gb =

N∑
q=2

3∑
m=1

GSFP g mb q

(
PGmq − PDm

q − Emq
)

(43)



ψ=

 N∑
n=1

3∑
m=1

 Jm
n∑

j=1

Cd (n,m)j d (n,m)j −
Imn∑
i=1

Cg (n,m)i g (n,m)i

− 3∑
p=1

λp

(
N∑
i=1

3∑
m=1

(DFmi )p · PGmi

−
N∑
i=1

3∑
m=1

(DFmi )p · (PDm
i + Emi ) + P pLoss(FP )− P pLoss(FQ)

)
−

B∑
b=1

3∑
p=1

µpb
+

(
N∑
q=1

3∑
g=1

GSFP p gb q · P
g
q − PLimit

p
b

)

−
B∑
b=1

3∑
p=1

µpb
−
(
−

N∑
q=1

3∑
g=1

GSFP p gb q · P
g
q − PLimit

p
b

)
−

2∑
p=1

3∑
m=2,m 6=p

µpm+

(
N∑
n=2

P pn −
N∑
n=2

Pmn − γ

)

−
2∑
p=1

3∑
m=2,m 6=p

µpm−
(
−

N∑
n=2

P pn +

N∑
n=2

Pmn − γ

)
(45)

Thus, power flow constraints (3) are revised as:

|
N∑
q=2

3∑
g=1

GSFP p gik q ·
(
PGgq − PDg

q − Emq
)
|2 ≤ PLimitpik,

∀i, k and i 6= k (44)

Then the values of LFs, DFs, and power losses are updated
with the new power injections and power flows calculated from
equations (42)-(43).

E. Iterative DCOPF Algorithm

The FND-based DCOPF problem is solved iteratively. The
iterative algorithm we propose can be briefly described as
follows:

1) Initially set LFs, FNDs and power losses to zeros.
2) Solve linear optimization problem using (1), (4), (40),

and (44).
3) Update the values of FNDs, power losses, LFs and DFs

using (37), (38), (41) and (43).
4) Solve the linear optimization problem again using (1),

(4), (40), and (44).
5) Check the dispatch of loads and generation resources. If

the difference between the current iteration and previous
iteration’s result is larger than the pre-defined tolerance,
go the step 3. Otherwise, the final three-phase OPF
solution is obtained.

III. THREE-PHASE LMP DECOMPOSITION

LMP at node i with phase g can be derived by differentiating
Lagrangian function (45) with respect to fixed load at node
i phase g. Lagrangian function ψ is derived from objective
function (1) and constraints (4), (40), and (44). λp is the La-
grange multiplier of real power balance constraint of phase p
(40); µpb

+ and µpb
− are the Lagrange multipliers of distribution

line thermal limit constraints (44); µpm+ and µpm− are the
Lagrange multipliers of phase imbalance constraints (4).

As shown in (46), three-phase LMPs can be decomposed
into four component: marginal energy component, marginal
loss component, marginal congestion component, and marginal
phase imbalance component. Compared with single-phase

LMP, three-phase LMP has an extra component, namely,
marginal phase imbalance component.

LMP gi =
∂ψ

∂FDg
i

=

3∑
p=1

λp(DF gi )p +

B∑
b=1

3∑
p=1

µpb
′
GSFP p gb i + µg ′′

= λg −
3∑
p=1

λp(LF gi )p +

B∑
b=1

3∑
p=1

µpb
′
GSFP p gb i + µg ′′ (46)

where
µpb
′

= µpb
+ − µpb

−

µg ′′ =


µ12+

+ µ13 − µ12
i
− − µ13− if g = 1;

−µ12+
+ µ23 + µ12

i
− − µ23− if g = 2;

−µ13+ − µ23 + µ13
i
−

+ µ23− if g = 3.

IV. NUMERICAL STUDY

In this section, a benchmark three-phase ACOPF algorithm
is first briefly presented. The proposed three-phase DCOPF
algorithm is then compared with the ACOPF algorithm using
the IEEE 4-bus test system. At last, the decomposition of the
three-phase LMPs is illustrated with the test system.

A. Three-phase ACOPF Algorithm

The benchmark ACOPF algorithm is based on an exten-
sion of the SDP algorithm [10] to three-phase system with
rank reduction technique described in [18]. The optimality
of ACOPF algorithm can be validated with the conditions
stated in [10] for the convex iteration algorithm. Note that
this ACOPF algorithm cannot be easily scaled up due to the
curse of dimensionality.

B. Simulation Setup

The simulation is based on the modified IEEE 4-bus test
case. The quantity of fixed demand and price sensitive demand
of node 4 are shown in Table I. The demand bid curves of
flexible loads on three-phases are modeled as step functions
shown in Figure 1. The 10 steps of each demand bid curve
are assumed to have equal length. The price ranges of the



three price sensitive demand bid curves are from $0.1/kWh to
$1/kWh. To study the impact of bus voltage deviation on the
accuracy of the proposed DCOPF algorithm, simulations are
conducted by increasing the reference bus voltage from 1.0
to 1.15 per unit with a step size of 0.01. The base phase-to-
neutral voltage of the distribution network is 7.2 KV.

TABLE I
LOAD PROFILE ON NODE 4

Node 4 Phase A Phase B Phase C Total

Fixed Load Capacity (KW) 500 500 500 1500

Flexible Load Capacity (KW) 250 300 350 900
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Fig. 1. Demand bid curve of flexible load

C. Simulation Results

1) A comparison between three-phase DCOPF and three-
phase ACOPF: The simulation results of three-phase DCOPF
and three-phase ACOPF are shown in Table II when the
voltage of the reference bus is at 1.0 per unit. As shown in
Table II, the differences in social welfare, system real power
losses, and real power line flows are very small between
the proposed three-phase DCOPF and the benchmark three-
phase ACOPF algorithm. The differences in reactive power
flow are slightly larger than the real power flow due to the
fact that reactive power losses are not modeled in the three-
phase DCOPF algorithm. However, as the power factors of
distribution loads are typically around 0.95 lagging, the errors
of reactive power flow are usually not very significant.

Numerical errors of real power losses and total social
welfare are calculated for the proposed three-phase DCOPF
algorithm. Figure 2. depicts the change in the numerical errors
with various load bus voltage levels. The proposed three-phase
DCOPF algorithm achieves best accuracy when the load bus
three-phase average voltage is around 1.05 per unit. If the load
bus voltage is kept between 0.98 and 1.02 per unit, then the
errors of social welfare and real power losses associate with

TABLE II
COMPARISON BETWEEN THREE-PHASE DCOPF AND THREE-PHASE

ACOPF

DCOPF ACOPF

Social Welfare ($) 833.4 838.6

Real Power Loss (KW) 38.9 47.1

Power Flows: Line 1 (KVA)

613+242.2i 618.6+281.6i

631.4+242.2i 633.6+281.5i

654.6+242.2i 654.9+288.7i

Power Flows: Line 2 (KVA)

611.5+242.2i 617.2 + 279.5i

629.9+242.i 632.7+279.5i

652.8+242.2i 653.9+286.2i

Power Flows: Line 3 (KVA)

605.2+242.i 614.9+265.7i

624.4+242.2i 630.3+265.1i

645.7+242.2i 651.3+270.8i

the three-phase DCOPF algorithm are smaller than 0.5% and
10% respectively.
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Fig. 2. Numerical error versus load bus voltage

2) Three-phase LMP decomposition: The LMPs of the
IEEE 4-bus network are shown in Table III. As illustrated in
equation (46), three-phase LMPs consists of marginal energy
component, marginal loss component, marginal congestion
component, and marginal phase imbalance component. How-
ever, because the congestion constraints and phase imbalance
constraints are not binding, these two components are not
present in Table III. The marginal energy components are
$0.6/kWh for every single bus and phase in the network.
The marginal loss components and loss factors increase from
distribution substation to the end of the feeder. The marginal
loss components are higher on phase c whose loads are slightly
higher than that of phase a and b. In order to show the
effects of marginal phase imbalance component, simulations
are performed by setting the fixed load of phase a as 460 KW
and the fixed load of phase c as 530KW. The phase imbalance
limit is set as 50 KW. The result of LMPs is shown in Table



IV. The phase imbalance constraint relating phase a and c is
binding. The marginal imbalance price component of phase
a is about $-0.1/kWh, while the marginal imbalance price
component of phase c is about $0.1/kWh. Phase imbalance
components of three-phase LMPs are crucial economic signals
sent to customers on phase a and c instructing them to adjust
load level to alleviate phase imbalance problems. The effect
of congestion component is intuitive and straightforward.

TABLE III
THREE-PHASE LMPS WITH ONLY ENERGY AND LOSS COMPONENTS

Price ($/KWh) Node 2 Node 3 Node 4

Phase A 0.6 + 0.0016 0.6 + 0.0053 0.6 + 0.0234

Phase B 0.6 + 0.0013 0.6 + 0.0051 0.6 + 0.02

Phase C 0.6 + 0.0016 0.6 + 0.0055 0.6 + 0.0228

TABLE IV
THREE-PHASE LMPS WITH ENERGY, LOSS, AND PHASE IMBALANCE

COMPONENTS

Price ($/KWh)

Node2
Phase A 0.6 + 0.0016− 0.1033

Phase B 0.6 + 0.0052− 0.1033

Phase C 0.6 + 0.0228− 0.1033

Node3
Phase A 0.6 + 0.0013 + 0

Phase B 0.6 + 0.0051 + 0

Phase C 0.6 + 0.0200 + 0

Node4
Phase A 0.6 + 0.0015 + 0.1033

Phase B 0.6 + 0.0054 + 0.1033

Phase C 0.6 + 0.0226 + 0.1033

V. CONCLUSION

This paper develops a three-phase iterative DCOPF algo-
rithm with fictitious nodal demand. GSF matrix, LF, and
DF are derived within the three-phase DCOPF framework.
The derivation for three-phase LMP decomposition shows that
LMP can be decomposed into four price components: marginal
energy component, marginal loss component, marginal con-
gestion component, and marginal phase imbalance component.
Simulation results from the IEEE 4-bus test case demonstrated
the validity of the proposed three-phase DCOPF algorithm.
The three-phase DCOPF algorithm is shown to be a good
approximation of the ACOPF algorithm when the load bus
voltage is within normal operating range.
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