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Abstract—Penetration of advanced sensor systems such as 

advanced metering infrastructure (AMI), high-frequency 

overhead and underground current and voltage sensors have 

been increasing significantly in power distribution systems over 

the past few years. According to U.S. energy information 

administration (EIA), the aggregated AMI installation 

experienced a 17 times increase from 2007 to 2012. The AMI 

usually collects electricity usage data every 15 minute, instead of 

once a month. This is a 3,000 fold increase in the amount of data 

utilities would have processed in the past. It is estimated that the 

electricity usage data collected through AMI in the U.S. amount 

to well above 100 terabytes in 2012. To unleash full value of the 

complex data sets, innovative big data algorithms need to be 

developed to transform the way we operate and plan for the 

distribution system. This paper not only proposes promising 

applications but also provides an in-depth discussion of technical 

and regulatory challenges and risks of big data analytics in 

power distribution systems. In addition, a flexible system 

architecture design is proposed to handle heterogeneous big data 

analysis workloads. 

Index Terms—Advanced Metering Infrastructure, Big Data 

Analytics, Power Distribution Systems, Data Mining, Predictive 

Analytics 

I. INTRODUCTION 

According to the Navigant Research Report, the estimated 
installed base of smart meters worldwide will surpass 1.1 
billion by 2022 [1]. AMI typically collects electricity usage 
data in the range of 15 minutes to 1 hour, instead of once a 
month. This is up to a three thousand fold increase in the 
amount of data utilities would have processed in the past. It 
means that by 2022 the electric utility industry will be 
swamped by more than 2 petabytes of data annually from 
smart meters alone. As we move to the so called Internet of 
Things, and more devices are connected to the electric grid, 
even more data will be produced. The primary and secondary 
value imbedded in the complex and heterogeneous data sets 
from power distribution systems is immense. However, 
strategies for unlocking the potential of big data in distribution 
systems are at an early stage of development. Most utilities in 
the world are underprepared and expected to struggle with the 

growing volume of data [2]. There are three major obstacles to 
the development and implementation of big data analytics in 
power distribution systems. The first barrier to adoption of big 
data analytics in the distribution grid is the lack of innovative 
use cases and application proposals that convert big data into 
valuable operational intelligence. The second hurdle to 
adoption is insufficient research on big data analytics system 
architecture design and advanced mathematics for petascale 
data. The last obstacle to adoption is the risk of failing to 
adhere to data privacy and data protection standards. This 
paper addresses all three obstacles to spearhead the 
advancement of big data analytics in power distribution 
systems. 

A. Big Data Applications in Other Industries 

Big data analytics have been revolutionizing many 
industries ranging from mature industries such as consumer 
staples to fast-growing industries such as information 
technology. Swamped by data measured in petabytes, the 
information technology industry is the first to adopt big data 
algorithms and processes. Nowadays, most of the popular 
computer and web applications are powered by big data 
analytics algorithms. For example, Amazon’s 
recommendation system now contributes to a third of its sales. 
The system is fed by a large amount of information on users’ 
behaviors and activities. Similarly, by availing itself of 
billions of pages of translations of widely varying quality, the 
Google’s translation system has become more accurate than 
those of other systems [3]. The most notable advances in 
analytics have come from the social media internet companies 
such as Yahoo, Facebook, LinkedIn and Google, who have 
been able to advance the technology to the point where they 
can handle the huge volume of data in real-time to determine 
the most effective ad placement strategies. 

B. Driving Forces and Enabling Technologies toward Big 

Data Analytics in Power Distribution Systems 

Lower data storage and data collection cost in the power 
distribution system are the two major driving forces toward 
big data analytics. The rapidly falling cost of digital storage 
has spearheaded most industries into the big data era. The 



advanced sensor system such as AMI and the corresponding 
communication network is pushing down the data collection 
cost significantly in the distribution systems. For example, the 
smart meters with a built in two-way communication system 
developed in the past 5 to 10 years have allowed easier 
information sharing between utilities and customers. Both 
Federal sponsored programs and market forces are facilitating 
the wide-spread adoption of AMI in the U.S. In addition, 
because of Smart Grid initiatives, the number and variety of 
distribution devices and equipment that needs to be monitored 
and controlled continues to increase. This is mostly driven by 
state and federal policies that incentivize adoption of 
distributed generation, energy storage, electric vehicle, direct 
load control, and distribution system automation systems. As 
of today, the amount of customer and equipment information 
being collected in the power distribution systems had utterly 
swamped the traditional tools used for processing them. In 
summary, the system operator and planner are now facing a 
heterogeneous and complex big data set that is growing 
exponentially. This calls for a dramatic change in the way we 
handle and analyze the information in the distribution systems.  

C. Value Proposition of Big Data Applications in Power 

Distribution Systems 

Utilities use data collected from field devices to inform 
decisions for various applications including grid operations, 
electric system planning, wholesale market participation, and 
policy discussions. Historically the field devices have been 
capable of power monitoring, and high costs have limited the 
deployment to larger infrastructure including transmission and 
distribution substations. It is rare for a utility pre-AMI 
deployment to have visibility beyond the distribution 
substation other than monthly billing data. Limited visibility 
becomes an even larger issue when trying to predict the 
changes happening at the distribution level such as solar 
photovoltaic (PV) and electric vehicle (EV) adoption. The 
amount of data becomes prohibitive to analyze using 
ubiquitous software such as Microsoft Excel and must be 
analyzed in a big data environment. Once this challenge is 
overcome there is an opportunity for utilities to improve 
decision making. The impacts to utility business operations 
include: improved equipment diagnosis, state estimation and 
distribution grid visualization, more granular load and 
renewable forecasting, device failure prediction, and 
comprehensive policy impact analysis. 

II. BIG DATA APPLICATIONS IN DISTRIBUTION SYSTEMS 

Big data analytics could be applied to improve both short-
term distribution system operations and long-term distribution 
system planning processes. With big data, the sum is always 
more valuable than parts of the data set. Studying different 
subsets of the complex distribution system data set leads us to 
distinct applications. This section proposes promising big data 
applications for both short-term operations and long-term 
planning studies. The applications include detection of energy 
theft, customer consumption behavior modeling, spatial load 
and renewable forecast, distribution system visualization, state 
estimation, and distribution system planning. 

A. Application for Short-Term System Operations 

Detect Energy Theft: The primary use of interval meter 
data is automation in billing and settlement. Usually, both 
customer-based electronic meter and concentrator meters are 
installed in the distribution system. The concentrator meters 
aggregate and track data from multiple customer-based 
meters. By analyzing an avalanche of paired data from 
concentrator meters and customer-based meters, irregular 
energy loss patterns could be easily identified [4]. If we add in 
historical energy theft information, it is possible to further 
filter out reasonable changes in energy consumption trends 
and detect potential energy theft. 

Detect EV and Rooftop Solar Integration: In the past, 

residential customer load profiles have been dependent upon 

larger loads, which have been heating & cooling systems. 

With changes to these characteristic load shapes from new 

technologies such as electric vehicles and rooftop solar PV 

there is potential to detect when a customer adopts such a 

system as well as system performance. Power flow returned 

to the grid is an easy identifier of a photovoltaic system 

installation and the magnitude (although the signal is mixed 

with load) can be identified by recognizing the season and 

expected load of the customer. Dependent on customer 

behavior, the EV detection would use fuzzy logic to identify a 

characteristic change in baseload. Tracking these two 

adoption trends is critical for structuring power purchase 

agreements, planning infrastructure upgrades, and informing 

state policies. 

Develop More Granular Load Forecast: The availability of 

interval meter data also creates the opportunity to develop 

more accurate and granular load forecast in terms of both 

location and time. More accurate forecasts will benefit both 

transmission and distribution system operations. A more 

accurate spatial forecast in the transmission system has huge 

impact on the unit commitment and dispatch process. A 

reduction of 1% in mean absolute percentage error (MAPE) 

could decrease annual variable generation cost in the United 

States by approximately $160 million [5]. Currently, the 

utilities typically submit aggregate load forecast in their 

service territories to the market/system operator. The market 

operator would then disaggregate the forecast to the 

substation level by using weather forecast information and 

historical load distribution factors. With more granular 

customer consumption and behavior information, the utilities 

are in a great position to improve the spatial load forecast 

accuracy through mining both electricity consumption data 

and weather information. 

Develop More Granular Renewable Generation Forecast: 

With rapid penetration of distributed renewable generation in 

distribution system, the need for accurate distributed 

renewable forecast becomes critical. For example, as 

distributed renewable (mostly solar photovoltaic) penetration 

levels in distribution circuits reach 15% and beyond in 

Hawaii and Southern California, the distributed generation 

starts to have significant impacts on distribution systems 

planning and operation. An accurate spatial joint load and 



rooftop solar generation forecast could greatly help 

distribution system operators manage circuit overloading, 

address reverse power flow and improve circuit voltage 

profile and power quality [6]. The challenge of producing 

granular renewable generation forecast lies in the lack of 

direct rooftop photovoltaic generation measurement as most 

of the residential solar panels do not have a separate meter. 

Hence, the solar generation has to be derived from historical 

load and net load measurements as well as irradiance data 

collected from local weather stations. 

Visualization in Power Distribution Systems: 

Visualization of power distribution systems is critical in 

facilitating system operator’s management of distribution 

systems. The difficulty of distribution system visualization 

arises from two sources the distributed nature of the data, and 

the scale of the data set. While the North American power 

transmission network can be represented by less than 100,000 

buses, the number of customer (load node) in the distribution 

system well exceeds 100 million. In addition, the distribution 

system has a much larger number of operable equipment such 

as capacitors, voltage regulators, and transformers compared 

to the transmission system. To satisfy distribution system 

operation’s real-time requirements in an interactive manner, 

the distribution system visualization system should be 

capable of explicitly trading the speed of display against 

accuracy. In addition, to handle the distributed nature of the 

data, new database structures and mathematical 

methodologies such as dimension reduction need to be 

developed. 

State Estimation: Grid operators are dependent on state 

estimation to predict the impacts of their decisions in day-to-

day operations. State estimation is the application of power 

flow equations, data from field monitors, and heuristics to 

measure grid conditions. The applications that rely on state 

estimation for performing analysis of the distribution grid are 

numerous and include overloading prevention, outage 

management, DER dispatch, and integration with 

transmission operations [7]. With the introduction of AMI 

data the state estimation algorithms can reduce error by 

allocating load correctly and thus improving the decision-

making capability of grid operators. 

Equipment Diagnosis: Electric utilities maintain billion 

dollar asset bases of infrastructure and these systems require 

regular maintenance. A sample of 34 parent utility companies 

will require $70 billion in capital expenditures in 2013 [8]. To 

maximize effective replacement of these systems AMI data 

can be leveraged to predict failure of distribution transformers, 

underground cable, overhead lines, and voltage regulation 

devices. Transformer life can be predicted by observing 

loading patterns throughout the year. The degradation of 

transformer life is non-linear as the insulation of the 

transformer breaks down quicker at higher temperatures [9]. 

B. Application for Long-Term System Planning Studies 

Model Customer Consumption Behavior under Various 
Incentive and Pricing Structures: Another use of interval meter 
data is to support new retail pricing mechanisms such as time-
of-use pricing and critical-peak pricing. With the load metered 
at 15-minute intervals, customer’s response to changes in the 
transmission system conditions and wholesale electricity 
prices can be accurately measured and rewarded. Big data 
analytics could be applied to quantify the benefits of new 
retail rate design and measure the success of various demand 
response programs. Using the same data set, researchers could 
model and study the differences in customer’s electric energy 
consumption behavior under different pricing mechanisms and 
incentive programs. The analysis results will provide helpful 
insights on how to quantify, extract and aggregate load 
flexibility. These insights will also facilitate the utilities’ and 
demand response aggregators’ efforts to refine and tailor 
electricity retail pricing structures and demand response 
programs. 

Transformation of Distribution System Planning Process: 
Current distribution planning processes for electric utilities 
already rely upon large data sets. The planning process 
typically requires a considerable amount of man-hours and a 
dedicated department for electric system planning. Integrating 
AMI data to existing planning processes would be of great 
benefit for three primary reasons. 1) Electric system planning 
departments rely upon a single metered data point for a single 
distribution circuit. This singular point is the basis for 
infrastructure upgrades. AMI data provides extra metering 
points for spatial awareness of planning requirements. This 
helps the engineer not only maintain the primary substation 
gateway, but also plan for the radials at the end of the circuit. 
2) Field devices often fail through physical degradation or 
unreliable communication mediums. If the device fails even 
for a moment during a critical loading condition the data can 
be erroneous. AMI data provides added redundancy in load 
estimation if the primary monitoring point was to fail. 3) 
Customer behaviors are changing with the adoption of EVs 
and solar PV. Typically weather regression is done to estimate 
load during a high loading weather driven condition or peak 
system condition [10]. As solar PV and EV adoption increases 
the customer behavior will change and AMI provides insight 
to the less predictable behavior of these devices. This helps the 
engineer plan more effectively when predicting load growth 
and weather sensitivity for a particular distribution circuit. 
Even with these added benefits it can be difficult to integrate 
this big data opportunity into the current planning process. 

III. TECHNICAL CHALLENGES IN DEVELOPING BIG DATA 

APPLICATIONS IN POWER DISTRIBUTION SYSTEMS 

The challenges in developing big data applications in 
power distribution system are two-fold: first, to design a 
flexible system architecture that accommodates and optimizes 
big data analytic workloads, and second, to develop scalable 
mathematical tools capable of processing distributed data. 



In this paper, we propose a flexible system architecture 
design capable of handling heterogeneous workloads with 
structured, semi-structured and unstructured data from various 
sources. In addition, scalable mathematical tools such as 
machine learning, dimension reduction and streaming data 
analysis that are applicable to the unique complex data sets in 
power distribution systems are discussed in detail. 

A. Data Science Challenge 

Data collected by power systems suffer from three primary 
issues. 1) They are incomplete in nature. 2) They are 
heterogeneous and therefore difficult to merge. 3) Systems 
update or make their data available at different rates. Since the 
electric grid is operating continuously there is monitor failure 
during grid operation because of degradation or 
communication breakdown. Heterogeneity in power system 
data exists because often the data was intended for a specific 
application and not collected for a holistic purpose. For 
example grid operations through the SCADA system operate 
in the four second range whereas AMI systems collect data in 
the minute to hourly range. Data mining and heuristics can be 
used to correct these problems, but must be applied carefully. 

B. Mathematical Challenges 

Traditional mathematical methods are not adequate in 

handling petabyte scale, high-dimensional, distributed data 

sets in situ. To address high-dimensionality, machine 

learning, statistics and optimization algorithms such as 

classification, clustering, sampling, and linear/nonlinear 

optimization algorithms need to be easily scalable. 

Alternatively, scalable and flexible dimension reduction 

techniques are needed to extract latent features and relevant 

subsets while balancing accuracy and degree of reduction 

according to user specification [11]. 

Large scale data sets in power distribution systems tend to 

be inherently heterogeneous and distributed. To efficiently 

analyze the distributed data, the algorithms need to come to 

the data rather than moving data set to the algorithm.  For 

example, many mathematically algorithms could be modified 

to accommodate parallelization such as Map-Reduce system. 

The main idea is to first divide a job into many tasks that run 

in parallel and only access local information and then shuffle 

and sort individual task results, and reduce intermediate 

outcome into final results.   

With high velocity of streaming and spatial distribution 

system data, near real-time analysis and control applications 

are needed such as anomaly detection and emergency control. 

In addition, it may not be feasible or economical to storage all 

raw data and process them later. Therefore, it is desirable to 

develop algorithms that can operate with a single pass though 

the data [11]. 

C. Proposed System Architecture for Power Distribution 

Systems Analytics 

The major classes of data in the proposed system 

architecture are 1) customer data measured using smart 

meters, 2) grid data measured on the distribution and 

transmission network using SCADA, 3) market data such as 

prices, and 4) other data such as weather, macro-economic or 

publicly collected census and text, tweets data. As shown in 

Figure 1, through various types of communication networks, 

the heterogeneous and complex data sets are transmitted and 

stored in traditional relational database, data warehouse, web 

servers, application servers and file servers. These data sets 

are then loaded into Hadoop clusters and/or distributed in-

memory databases depending on the size, usefulness of the 

data, and importance of downstream applications. The Hadoop 

cluster runs on commodity hardware and provides a cost 

effective solution to analyze big data sets. The in-memory 

database or HPC cluster are typically more expensive yet 

powerful proprietary offerings from vendors. To perform 

predictive analytics, optimization and control, code developed 

in analytical tools such as SAS, Revolution R and Mahout will 

be moved to Hadoop cluster or HPC cluster to perform short-

term operations and long-term planning studies. 

Figure 1.  Proposed System Architecture for Power Distribution Systems 



IV. RISKS IN DEPLOYING BIG DATA APPLICATIONS IN 

POWER DISTRIBUTION SYSTEMS 

One of the most critical risks in adopting big data 
applications in the power distribution system is poor quality 
data impacting the decision-making without the knowledge of 
the operator. This could happen if critical sensors failures are 
not detected by the data cleansing routines and the state 
estimation applications. Another critical risk involves data 
privacy and data protection. For instance, leaked interval 
meter data could be exploited to identify when people are not 
at home, whether they own an electric vehicle and/or rooftop 
solar panel, or in some cases find out the brand of appliance 
someone is using. The cornerstone privacy principle “notice 
and consent” is no longer applicable in the big data era. 
Hence, to avoid backlash from customers about big data 
analytics, not only do we need advanced cyber-security but 
also enhanced laws and regulations to protect data privacy in 
electric utilities industry. 

A. Privacy and Information Security Issues 

Power System and Other System Operation Data: While 
using big data there is the potential to identify patterns and 
draw conclusions that can be used to harm the grid. There are 
two agencies responsible for settings standards to protect 
infrastructure data. The North American Electric Reliability 
Corporation (NERC) is the regulatory agency responsible for 
reliability of the bulk power system in North America. NERC 
has set forward Critical Infrastructure Protection (CIP) 
standards to protect the public release and potential abuse of 
assets considered critical [12]. The other agency is the Federal 
Energy Regulatory Commission (FERC) and has defined 
Critical Energy Infrastructure Information (CEII) as specific 
engineering information about proposed or existing critical 
infrastructure [13]. This includes virtual systems that can be 
considered critical. Utilities currently adhere to these 
standards and if handled properly can mitigate any risk 
proposed from assembling big data applications. 

Customer Data: Local government entities, researchers, 
state and federal agencies and third parties need to access 
customer electricity usage and usage-related data to advance 
smart grid related research and energy policies. However, 
there are many privacy and information security issues 
related to use of customer electricity usage data. Without 
appropriate aggregation or anonymization, mining of raw 
smart meter data combined with other customer related data 
may allow re-identification of the data with individuals or 
individual firms and entities. In addition, a breach of the 
information security system of electrical utilities or a third-
party granted data access authority, could lead to 
unauthorized disclosure, use and modification of a customer’s 
unencrypted electrical consumption data. 

B. How to Control Privacy Risks in Deployment of Big Data 

Analytics in Power Distribution Systems 

An array of procedures should be considered to control 
privacy risks associated with analyzing customer data. First, 
notice and consent process needs to be established to grant 
various third parties authority to access customer usage data 

for specified purpose and not secondary use. Second, 
anonymize usage data sets by removing identifiable 
characteristics and information, such as, but not limited to, 
name, address, and account number based on use cases. Third, 
adopt a data aggregation standard to prevent identification of 
data on individual. Fourth, develop non-disclosure agreements 
with data security protocols to regulate provision of customer 
data to eligible participants. Similarly, proper security protocol 
and standards need to be set up for different types of customer 
data.  

V. CONCLUSIONS 

This paper advances the field of big data analytics in 

power distribution systems by addressing three major 

obstacles. Firstly, we not only propose big data applications 

in distribution systems but also revealed their immense value 

in the system planning and operation processes. Secondly, to 

handle heterogeneous big data analytic workloads, a flexible 

system architecture design that seamlessly integrates Hadoop 

cluster, in-memory Database, existing relational databases, 

file servers and web servers is proposed and developed. At 

last, data privacy and data protection issues involving big 

data applications in distribution system are tackled. 
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