Virtualization of the driving context of an autonomous vehicle *

Hyoseung Kim and Ragunathan (Raj) Rajkumar

Electrical and Computer Engineering
Carnegie Mellon University

Benefits of Multi-Core Platforms

- **Workload consolidation** onto a multi-core CPU
- **Reduces the number of CPUs and wiring harnesses among them**
- **Leads to a significant reduction in size, weight, power and cost requirements**

Real-Time System Virtualization

- **Barriers** to consolidation:
 - Applications are typically developed independently by different vendors
 - Bare-metal, proprietary OS
 - Linux, Android
 - IP and licensing considerations
- **Consolidation via virtualization**
 - Each application can maintain its own implementation
 - Minimizes re-certification process
 - IP protection and license segregation
 - Fault isolation

Virt/RK

- **Real-time virtualization** with resource kernel approach
 - CPU reservation for VCPUs + Memory reservation for VMs
 - Current implementation: Virt/RK::KVM-x86, Virt/RK::KVM-ARM
 - Virt/RK::L4 under development

Cache Interference within a VM

- **Problem**: cache interference among tasks within the same VM
 - Each VM can be assigned private cache partitions
 - But, those cache partitions are *shared* among tasks running in the VM
- **Solutions**: vLLC & vColoring, hypervisor-level methods to manage the cache allocation of individual tasks running in a VM
 - Supports proprietary, closed-source guest OSs

Experimental Results

- **Experimental Setup**:
 - x86: Intel i7-2600 four cores, ARM: Exynos 5422 (four ARM Cortex-A15 cores)
 - Guest OSs: Linux/RK, Vanilla Linux, MS Windows Embedded (x86 only)
- **Inter-VM interference among cache-sensitive tasks within a VM**

Demonstration

- **Virtualization of the driving context of an autonomous vehicle** **†**

† J. Wei et al., "Towards a Viable Autonomous Driving Research Platform", In IEEE Intelligent Vehicles Symposium (IV), 2013.